A Course in Mathematical Physics 1: Classical Dynamical Systems

· Springer Science & Business Media
Ebook
258
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This textbook presents mathematical physics in its chronological order. It originated in a four-semester course I offered to both mathematicians and physicists, who were only required to have taken the conventional intro ductory courses. In order to be able to cover a suitable amount of advanced materil;ll for graduate students, it was necessary to make a careful selection of topics. I decided to cover only those subjects in which one can work from the basic laws to derive physically relevant results with full mathematical rigor. Models which are not based on realistic physical laws can at most serve as illustrations of mathematical theorems, and theories whose pre dictions are only related to the basic principles through some uncontrollable approximation have been omitted. The complete course comprises the following one-semester lecture series: I. Classical Dynamical Systems II. Classical Field Theory III. Quantum Mechanics of Atoms and Molecules IV. Quantum Mechanics of Large Systems Unfortunately, some important branches of physics, such as the rela tivistic quantum theory, have not yet matured from the stage of rules for calculations to mathematically well understood disciplines, and are there fore not taken up. The above selection does not imply any value judgment, but only attempts to be logically and didactically consistent. General mathematical knowledge is assumed, at the level of a beginning graduate student or advanced undergraduate majoring in physics or mathe matics.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.