Visual Attributes

· ·
· Springer
Електронна книга
364
Страници
Оценките и отзивите не са потвърдени  Научете повече

Всичко за тази електронна книга

This unique text/reference provides a detailed overview of the latest advances in machine learning and computer vision related to visual attributes, highlighting how this emerging field intersects with other disciplines, such as computational linguistics and human-machine interaction. Topics and features: presents attribute-based methods for zero-shot classification, learning using privileged information, and methods for multi-task attribute learning; describes the concept of relative attributes, and examines the effectiveness of modeling relative attributes in image search applications; reviews state-of-the-art methods for estimation of human attributes, and describes their use in a range of different applications; discusses attempts to build a vocabulary of visual attributes; explores the connections between visual attributes and natural language; provides contributions from an international selection of world-renowned scientists, covering both theoretical aspects and practical applications.

За автора

Dr. Rogerio Schmidt Feris is a manager at IBM T.J. Watson Research Center, New York, USA, where he leads research in computer vision and machine learning.

Dr. Christoph H. Lampert is a professor at the Institute of Science and Technology Austria, where he serves as the Principal Investigator of the Computer Vision and Machine Learning Group.

Dr. Devi Parikh is an assistant professor in the School of Interactive Computing at Georgia Tech, USA, where she leads the Computer Vision Lab.

Оценете тази електронна книга

Кажете ни какво мислите.

Информация за четенето

Смартфони и таблети
Инсталирайте приложението Google Play Книги за Android и iPad/iPhone. То автоматично се синхронизира с профила ви и ви позволява да четете онлайн или офлайн, където и да сте.
Лаптопи и компютри
Можете да слушате закупените от Google Play аудиокниги посредством уеб браузъра на компютъра си.
Електронни четци и други устройства
За да четете на устройства с електронно мастило, като например електронните четци от Kobo, трябва да изтеглите файл и да го прехвърлите на устройството си. Изпълнете подробните инструкции в Помощния център, за да прехвърлите файловете в поддържаните електронни четци.