Transfinite Zahlen

· Springer-Verlag
电子书
211
评分和评价未经验证  了解详情

关于此电子书

Der vorliegende Bericht soll dem Leser die Ergebnisse und Probleme der Theorie der transfiniten Zahlen (Ordnungszahlen und Mächtigkeiten) nach ihrem heutigen Stande vermitteln, wobei die arithmetischen Fragen ziemlich erschöpfend erörtert werden, während auf axiomatische Fra gen weniger stark eingegangen wird. Die Grundlage bildet dabei das ZERMELO-FRAENKELsche Axiomensystem der Mengenlehre; die Anwen dung des Auswahlaxioms wird stets hervorgehoben. Um die Beschränkung auf einen bestimmten Formalismus zu vermeiden und zwecks besserer Lesbarkeit ist alles in der Sprache der naiven Mengenlehre formuliert. Nach einer allgemeinen Einleitung findet der Leser eine Darstellung der Theorie der Ordnungszahlen, wobei das Auswahlaxiom nur in Aus nahmefällen verwendet wird. Die neuen Ergebnisse über Normalfunktionen (§§7, 16) und über regressive Funktionen (§ 9) sowie die einfache Dar stellung der Theorie der Hauptzahlen (§§ 15,16) dürften dabei besonders von Interesse sein. Sodann folgt die Theorie der Mächtigkeiten; zuerst wird gezeigt, welche ersten Schritte in dieser Theorie ohne Auswahlaxiom ausgeführt werden können; dann wird die Theorie unter Verwendung des Auswahlaxioms (und ausführlicher) weiter entwickelt. Den Äquivalenzen zum Auswahlaxiom (§ 31) und zur Alephhypothese (§ 35) sowie den un erreichbaren Zahlen (§§ 40-42) wird besondere Beachtung geschenkt. Auf das Problem der formalen Darstellung von Ordnungszahlen, auf Anwen dungen der transfiniten Zahlen in der Theorie der Punktmengen und andere Anwendungen konnte wegen des beschränkten zur Verfügung stehenden Raumes nicht stark eingegangen werden. Am Scllluß findet sich ein Literaturverzeichnis, in dem die modernen Arbeiten fast voll ständig, die älteren nur teilweise aufgeführtsind, sowie ein Sachver zeichnis.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。