Topology of Tiling Spaces

· University Lecture Series Bog 46 · American Mathematical Soc.
E-bog
118
Sider
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

Aperiodic tilings are interesting to mathematicians and scientists for both theoretical and practical reasons. The serious study of aperiodic tilings began as a solution to a problem in logic. Simpler aperiodic tilings eventually revealed hidden ""symmetries"" that were previously considered impossible, while the tilings themselves were quite striking. The discovery of quasicrystals showed that such aperiodicity actually occurs in nature and led to advances in materials science. Many properties of aperiodic tilings can be discerned by studying one tiling at a time. However, by studying families of tilings, further properties are revealed.This broader study naturally leads to the topology of tiling spaces. This book is an introduction to the topology of tiling spaces, with a target audience of graduate students who wish to learn about the interface of topology with aperiodic order. It isn't a comprehensive and cross-referenced tome about everything having to do with tilings, which would be too big, too hard to read, and far too hard to write! Rather, it is a review of the explosion of recent work on tiling spaces as inverse limits, on the cohomology of tiling spaces, on substitution tilings and the role of rotations, and on tilings that do not have finite local complexity. Powerful computational techniques have been developed, as have new ways of thinking about tiling spaces. The text contains a generous supply of examples and exercises.

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.