Theory of Automata

· Elsevier
e-Buku
276
Halaman
Layak
Rating dan ulasan tidak disahkan  Ketahui Lebih Lanjut

Perihal e-buku ini

Theory of Automata deals with mathematical aspects of the theory of automata theory, with emphasis on the finite deterministic automaton as the basic model. All other models, such as finite non-deterministic and probabilistic automata as well as pushdown and linear bounded automata, are treated as generalizations of this basic model. The formalism chosen to describe finite deterministic automata is that of regular expressions. A detailed exposition regarding this formalism is presented by considering the algebra of regular expressions. This volume is comprised of four chapters and begins with a discussion on finite deterministic automata, paying particular attention to regular and finite languages; analysis and synthesis theorems; equivalence relations induced by languages; sequential machines; sequential functions and relations; definite languages and non-initial automata; and two-way automata. The next chapter describes finite non-deterministic and probabilistic automata and covers theorems concerning stochastic languages; non-regular stochastic languages; and probabilistic sequential machines. The book then introduces the reader to the algebra of regular expressions before concluding with a chapter on formal languages and generalized automata. Theoretical exercises are included, along with ""problems"" at the end of some sections. This monograph will be a useful resource for beginning graduate or advanced undergraduates of mathematics.

Berikan rating untuk e-Buku ini

Beritahu kami pendapat anda.

Maklumat pembacaan

Telefon pintar dan tablet
Pasang apl Google Play Books untuk Android dan iPad/iPhone. Apl ini menyegerak secara automatik dengan akaun anda dan membenarkan anda membaca di dalam atau luar talian, walau di mana jua anda berada.
Komputer riba dan komputer
Anda boleh mendengar buku audio yang dibeli di Google Play menggunakan penyemak imbas web komputer anda.
eReader dan peranti lain
Untuk membaca pada peranti e-dakwat seperti Kobo eReaders, anda perlu memuat turun fail dan memindahkan fail itu ke peranti anda. Sila ikut arahan Pusat Bantuan yang terperinci untuk memindahkan fail ke e-Pembaca yang disokong.