The Real Fatou Conjecture

Β·
· Annals of Mathematics Studies Книга 144 · Princeton University Press
Π•-ΠΊΠ½ΠΈΠ³Π°
148
Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†ΠΈ
Π‘ΠΎΠΎΠ΄Π²Π΅Ρ‚Π½Π°
ΠžΡ†Π΅Π½ΠΈΡ‚Π΅ ΠΈ Ρ€Π΅Ρ†Π΅Π½Π·ΠΈΠΈΡ‚Π΅ Π½Π΅ сС ΠΏΠΎΡ‚Π²Ρ€Π΄Π΅Π½ΠΈ Β Π”ΠΎΠ·Π½Π°Ρ˜Ρ‚Π΅ повСќС

Π—Π° Π΅-ΠΊΠ½ΠΈΠ³Π°Π²Π°

In 1920, Pierre Fatou expressed the conjecture that--except for special cases--all critical points of a rational map of the Riemann sphere tend to periodic orbits under iteration. This conjecture remains the main open problem in the dynamics of iterated maps. For the logistic family x- ax(1-x), it can be interpreted to mean that for a dense set of parameters "a," an attracting periodic orbit exists. The same question appears naturally in science, where the logistic family is used to construct models in physics, ecology, and economics.


In this book, Jacek Graczyk and Grzegorz Swiatek provide a rigorous proof of the Real Fatou Conjecture. In spite of the apparently elementary nature of the problem, its solution requires advanced tools of complex analysis. The authors have written a self-contained and complete version of the argument, accessible to someone with no knowledge of complex dynamics and only basic familiarity with interval maps. The book will thus be useful to specialists in real dynamics as well as to graduate students.

Π—Π° Π°Π²Ρ‚ΠΎΡ€ΠΎΡ‚

Jacek Graczyk is Assistant Professor of Mathematics at Michigan State University. Grzegorz Swiatek is Associate Professor of Mathematics at Pennsylvania State University.

ΠžΡ†Π΅Π½Π΅Ρ‚Π΅ ја Π΅-ΠΊΠ½ΠΈΠ³Π°Π²Π°

ΠšΠ°ΠΆΠ΅Ρ‚Π΅ Π½ΠΈ ΡˆΡ‚ΠΎ мислитС.

Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π·Π° Ρ‡ΠΈΡ‚Π°ΡšΠ΅

ΠŸΠ°ΠΌΠ΅Ρ‚Π½ΠΈ Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½ΠΈ ΠΈ Ρ‚Π°Π±Π»Π΅Ρ‚ΠΈ
Π˜Π½ΡΡ‚Π°Π»ΠΈΡ€Π°Ρ˜Ρ‚Π΅ ја Π°ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π°Ρ‚Π° Google Play Books Π·Π° Android ΠΈ iPad/iPhone. Автоматски сС синхронизира со смСтката ΠΈ Π²ΠΈ ΠΎΠ²ΠΎΠ·ΠΌΠΎΠΆΡƒΠ²Π° Π΄Π° Ρ‡ΠΈΡ‚Π°Ρ‚Π΅ онлајн ΠΈΠ»ΠΈ ΠΎΡ„Π»Π°Ρ˜Π½ ΠΊΠ°Π΄Π΅ ΠΈ Π΄Π° стС.
Π›Π°ΠΏΡ‚ΠΎΠΏΠΈ ΠΈ ΠΊΠΎΠΌΠΏΡ˜ΡƒΡ‚Π΅Ρ€ΠΈ
МоТС Π΄Π° ΡΠ»ΡƒΡˆΠ°Ρ‚Π΅ Π°ΡƒΠ΄ΠΈΠΎΠΊΠ½ΠΈΠ³ΠΈ ΠΊΡƒΠΏΠ΅Π½ΠΈ ΠΎΠ΄ Google Play со ΠΊΠΎΡ€ΠΈΡΡ‚Π΅ΡšΠ΅ Π½Π° Π²Π΅Π±-прСлистувачот Π½Π° ΠΊΠΎΠΌΠΏΡ˜ΡƒΡ‚Π΅Ρ€ΠΎΡ‚.
Π•-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈ ΡƒΡ€Π΅Π΄ΠΈ
Π—Π° Π΄Π° Ρ‡ΠΈΡ‚Π°Ρ‚Π΅ Π½Π° ΡƒΡ€Π΅Π΄ΠΈ со Π΅-мастило, ΠΊΠ°ΠΊΠΎ ΡˆΡ‚ΠΎ сС Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈΡ‚Π΅ Kobo, ќС Ρ‚Ρ€Π΅Π±Π° Π΄Π° ΠΏΡ€Π΅Π·Π΅ΠΌΠ΅Ρ‚Π΅ Π΄Π°Ρ‚ΠΎΡ‚Π΅ΠΊΠ° ΠΈ Π΄Π° ја ΠΏΡ€Π΅Ρ„Ρ€Π»ΠΈΡ‚Π΅ Π½Π° ΡƒΡ€Π΅Π΄ΠΎΡ‚. Π‘Π»Π΅Π΄Π΅Ρ‚Π΅ Π³ΠΈ Π΄Π΅Ρ‚Π°Π»Π½ΠΈΡ‚Π΅ упатства Π²ΠΎ Π¦Π΅Π½Ρ‚Π°Ρ€ΠΎΡ‚ Π·Π° помош Π·Π° ΠΏΡ€Π΅Ρ„Ρ€Π»Π°ΡšΠ΅ Π½Π° Π΄Π°Ρ‚ΠΎΡ‚Π΅ΠΊΠΈΡ‚Π΅ Π½Π° ΠΏΠΎΠ΄Π΄Ρ€ΠΆΠ°Π½ΠΈ Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ.