The Monodromy Group

· Monografie Matematyczne Cartea 67 · Springer Science & Business Media
Carte electronică
583
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

In singularity theory and algebraic geometry the monodromy group is embodied in the Picard-Lefschetz formula and the Picard-Fuchs equations. It has applications in the weakened 16th Hilbert problem and in mixed Hodge structures. In the theory of systems of linear differential equations one has the Riemann-Hilbert problem, the Stokes phenomena and the hypergeometric functions with their multidimensional generalizations. In the theory of homomorphic foliations there appear the Ecalle-Voronin-Martinet-Ramis moduli. On the other hand, there is a deep connection of monodromy theory with Galois theory of differential equations and algebraic functions. All this is presented in this book, underlining the unifying role of the monodromy group.

The material is addressed to a wide audience, ranging from specialists in the theory of ordinary differential equations to algebraic geometers. The book contains a lot of results which are usually spread in many sources. Readers can quickly get introduced to modern and vital mathematical theories, such as singularity theory, analytic theory of ordinary differential equations, holomorphic foliations, Galois theory, and parts of algebraic geometry, without searching in vast literature.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.