The Hamiltonian Circuit Algorithm

· Institute of Mathematics
5,0
1 vélemény
E-könyv
36
Oldalak száma
Az értékelések és vélemények nincsenek ellenőrizve További információ

Információk az e-könyvről

We present a new polynomial-time algorithm for finding Hamiltonian circuits in graphs. It is shown that the algorithm always finds a Hamiltonian circuit in graphs that have at least three vertices and minimum degree at least half the total number of vertices. In the process, we also obtain a constructive proof of Dirac’s famous theorem of 1952, for the first time. The algorithm finds a Hamiltonian circuit (respectively, tour) in all known examples of graphs that have a Hamiltonian circuit (respectively, tour). In view of the importance of the P versus NP question, we ask: does there exist a graph that has a Hamiltonian circuit (respectively, tour) but for which this algorithm cannot find a Hamiltonian circuit (respectively, tour)? The algorithm is implemented in C++ and the program is demonstrated with several examples.

Értékelések és vélemények

5,0
1 vélemény

A szerzőről

Ashay Dharwadker is the Distinguished Professor of Mathematics & Natural Sciences at the Institute of Mathematics, Gurgaon, India. He is the author of a dozen exquisitely illustrated books describing his fundamental contributions to combinatorics, graph theory, computer science and the foundations of physics.

E-könyv értékelése

Mondd el a véleményedet.

Olvasási információk

Okostelefonok és táblagépek
Telepítsd a Google Play Könyvek alkalmazást Android- vagy iPad/iPhone eszközre. Az alkalmazás automatikusan szinkronizálódik a fiókoddal, így bárhol olvashatsz online és offline állapotban is.
Laptopok és számítógépek
A Google Playen vásárolt hangoskönyveidet a számítógép böngészőjében is meghallgathatod.
E-olvasók és más eszközök
E-tinta alapú eszközökön (például Kobo e-könyv-olvasón) való olvasáshoz le kell tölteni egy fájlt, és átvinni azt a készülékre. A Súgó részletes utasításait követve lehet átvinni a fájlokat a támogatott e-könyv-olvasókra.