The Banach–Tarski Paradox: Edition 2

·
· Encyclopedia of Mathematics and its Applications Libro 163 · Cambridge University Press
Ebook
368
pagine
Valutazioni e recensioni non sono verificate  Scopri di più

Informazioni su questo ebook

The Banach–Tarski Paradox is a most striking mathematical construction: it asserts that a solid ball can be taken apart into finitely many pieces that can be rearranged using rigid motions to form a ball twice as large. This volume explores the consequences of the paradox for measure theory and its connections with group theory, geometry, set theory, and logic. This new edition of a classic book unifies contemporary research on the paradox. It has been updated with many new proofs and results, and discussions of the many problems that remain unsolved. Among the new results presented are several unusual paradoxes in the hyperbolic plane, one of which involves the shapes of Escher's famous 'Angel and Devils' woodcut. A new chapter is devoted to a complete proof of the remarkable result that the circle can be squared using set theory, a problem that had been open for over sixty years.

Informazioni sull'autore

Grzegorz Tomkowicz is a self-educated Polish mathematician who has made several important contributions to the theory of paradoxical decompositions and invariant measures.

Stan Wagon is a Professor of Mathematics at Macalester College, Minnesota. He is a winner of the Wolfram Research Innovator Award, as well as numerous writing awards including the Ford, Evans, and Allendoerfer Awards. His previous work includes A Course in Computational Number Theory (2000), The SIAM 100-Digit Challenge (2004), and Mathematica® in Action, 3rd edition (2010).

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.