The Banach–Tarski Paradox: Edition 2

·
· Encyclopedia of Mathematics and its Applications Bog 163 · Cambridge University Press
E-bog
368
Sider
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

The Banach–Tarski Paradox is a most striking mathematical construction: it asserts that a solid ball can be taken apart into finitely many pieces that can be rearranged using rigid motions to form a ball twice as large. This volume explores the consequences of the paradox for measure theory and its connections with group theory, geometry, set theory, and logic. This new edition of a classic book unifies contemporary research on the paradox. It has been updated with many new proofs and results, and discussions of the many problems that remain unsolved. Among the new results presented are several unusual paradoxes in the hyperbolic plane, one of which involves the shapes of Escher's famous 'Angel and Devils' woodcut. A new chapter is devoted to a complete proof of the remarkable result that the circle can be squared using set theory, a problem that had been open for over sixty years.

Om forfatteren

Grzegorz Tomkowicz is a self-educated Polish mathematician who has made several important contributions to the theory of paradoxical decompositions and invariant measures.

Stan Wagon is a Professor of Mathematics at Macalester College, Minnesota. He is a winner of the Wolfram Research Innovator Award, as well as numerous writing awards including the Ford, Evans, and Allendoerfer Awards. His previous work includes A Course in Computational Number Theory (2000), The SIAM 100-Digit Challenge (2004), and Mathematica® in Action, 3rd edition (2010).

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.