Tensor Categories

· · ·
· Mathematical Surveys and Monographs Boek 205 · American Mathematical Soc.
E-boek
344
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories.

Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter. 

Over de auteur

 Pavel Etingof: Massachusetts Institute of Technology, Cambridge, MA,
Shlomo Gelaki: Technion-Israel Institute of Technology, Haifa, Israel,
Dmitri Nikshych: University of New Hampshire, Durham, NH,
Victor Ostrik: University of Oregon, Eugene, OR

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.