Synthetic Differential Topology

¡ ¡
¡ London Mathematical Society Lecture Note Series āĻ•āĻŋāϤāĻžāĻĒ 448 ¡ Cambridge University Press
āχāĻŦ⧁āĻ•
234
āĻĒ⧃āĻˇā§āĻ āĻž
āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āφ⧰⧁ āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻž āϏāĻ¤ā§āϝāĻžāĻĒāύ āϕ⧰āĻž āĻšā§‹ā§ąāĻž āύāĻžāχ  āĻ…āϧāĻŋāĻ• āϜāĻžāύāĻ•

āĻāχ āχāĻŦ⧁āĻ•āĻ–āύ⧰ āĻŦāĻŋāĻˇā§Ÿā§‡

This book formally introduces synthetic differential topology, a natural extension of the theory of synthetic differential geometry which captures classical concepts of differential geometry and topology by means of the rich categorical structure of a necessarily non-Boolean topos and of the systematic use of logical infinitesimal objects in it. Beginning with an introduction to those parts of topos theory and synthetic differential geometry necessary for the remainder, this clear and comprehensive text covers the general theory of synthetic differential topology and several applications of it to classical mathematics, including the calculus of variations, Mather's theorem, and Morse theory on the classification of singularities. The book represents the state of the art in synthetic differential topology and will be of interest to researchers in topos theory and to mathematicians interested in the categorical foundations of differential geometry and topology.

āϞāĻŋāĻ–āϕ⧰ āĻŦāĻŋāώāϝāĻŧ⧇

Marta Bunge is Professor Emerita of Mathematics at McGill University, Montreal. She is the author (with Professor Jonathon Funk) of the book Singular Coverings of Toposes (2010). Bunge is also a member of the editorial boards of the Cahiers de Topologie et Geometrie Differentielle Categoriques and of the Tbilisi Mathematical Journal.

Felipe Gago is Professor of Mathematics at the University of Santiago de Compostela, Spain.

Ana María San Luis is Professor of Mathematics at the University of Oviedo, Spain.

āĻāχ āχāĻŦ⧁āĻ•āĻ–āύāĻ• āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āϕ⧰āĻ•

āφāĻŽāĻžāĻ• āφāĻĒā§‹āύāĻžā§° āĻŽāϤāĻžāĻŽāϤ āϜāύāĻžāĻ“āĻ•āĨ¤

āĻĒāĻĸāĻŧāĻžā§° āύāĻŋāĻ°ā§āĻĻ⧇āĻļāĻžā§ąāϞ⧀

āĻ¸ā§āĻŽāĻžā§°ā§āϟāĻĢ’āύ āφ⧰⧁ āĻŸā§‡āĻŦāϞ⧇āϟ
Android āφ⧰⧁ iPad/iPhoneā§° āĻŦāĻžāĻŦ⧇ Google Play Books āĻāĻĒāĻŸā§‹ āχāύāĻˇā§āϟāϞ āϕ⧰āĻ•āĨ¤ āχ āĻ¸ā§āĻŦāϝāĻŧāĻ‚āĻ•ā§āϰāĻŋāϝāĻŧāĻ­āĻžā§ąā§‡ āφāĻĒā§‹āύāĻžā§° āĻāĻ•āĻžāωāĻŖā§āϟ⧰ āϏ⧈āϤ⧇ āĻ›āĻŋāĻ‚āĻ• āĻšāϝāĻŧ āφ⧰⧁ āφāĻĒ⧁āύāĻŋ āϝ'āϤ⧇ āύāĻžāĻĨāĻžāĻ•āĻ• āϤ'āϤ⧇āχ āϕ⧋āύ⧋ āĻ…āĻĄāĻŋāĻ…'āĻŦ⧁āĻ• āĻ…āύāϞāĻžāχāύ āĻŦāĻž āĻ…āĻĢāϞāĻžāχāύāϤ āĻļ⧁āύāĻŋāĻŦāϞ⧈ āϏ⧁āĻŦāĻŋāϧāĻž āĻĻāĻŋāϝāĻŧ⧇āĨ¤
āϞ⧇āĻĒāϟāĻĒ āφ⧰⧁ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžā§°
āφāĻĒ⧁āύāĻŋ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžā§°ā§° ā§ąā§‡āĻŦ āĻŦā§āϰāĻžāωāϜāĻžā§° āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āϕ⧰āĻŋ Google PlayāϤ āĻ•āĻŋāύāĻž āĻ…āĻĄāĻŋāĻ…'āĻŦ⧁āĻ•āϏāĻŽā§‚āĻš āĻļ⧁āύāĻŋāĻŦ āĻĒāĻžā§°ā§‡āĨ¤
āχ-ā§°ā§€āĻĄāĻžā§° āφ⧰⧁ āĻ…āĻ¨ā§āϝ āĻĄāĻŋāĻ­āĻžāχāϚ
Kobo eReadersā§° āĻĻ⧰⧇ āχ-āϚāĻŋ⧟āĻžāρāĻšā§€ā§° āĻĄāĻŋāĻ­āĻžāχāϚāϏāĻŽā§‚āĻšāϤ āĻĒā§āĻŋāĻŦāϞ⧈, āφāĻĒ⧁āύāĻŋ āĻāϟāĻž āĻĢāĻžāχāϞ āĻĄāĻžāωāύāĻ˛â€™āĻĄ āϕ⧰āĻŋ āϏ⧇āχāĻŸā§‹ āφāĻĒā§‹āύāĻžā§° āĻĄāĻŋāĻ­āĻžāχāϚāϞ⧈ āĻ¸ā§āĻĨāĻžāύāĻžāĻ¨ā§āϤ⧰āĻŖ āϕ⧰āĻŋāĻŦ āϞāĻžāĻ—āĻŋāĻŦāĨ¤ āϏāĻŽā§°ā§āĻĨāĻŋāϤ āχ-ā§°āĻŋāĻĄāĻžā§°āϞ⧈ āĻĢāĻžāχāϞāĻŸā§‹ āϕ⧇āύ⧇āĻ•ā§ˆ āĻ¸ā§āĻĨāĻžāύāĻžāĻ¨ā§āϤ⧰ āϕ⧰āĻŋāĻŦ āϜāĻžāύāĻŋāĻŦāϞ⧈ āϏāĻšāĻžāϝāĻŧ āϕ⧇āĻ¨ā§āĻĻā§ā§°āϤ āĻĨāĻ•āĻž āϏāĻŦāĻŋāĻļ⧇āώ āύāĻŋā§°ā§āĻĻ⧇āĻļāĻžā§ąāϞ⧀ āϚāĻžāĻ“āĻ•āĨ¤