The symmetry of hyperoperation is expressed by hypergroup, more extensive hyperalgebraic structures than hypergroups are studied in this paper. The new concepts of neutrosophic extended triplet semihypergroup (NET- semihypergroup) and neutrosophic extended triplet hypergroup (NET-hypergroup) are firstly introduced, some basic properties are obtained, and the relationships among NET- semihypergroups, regular semihypergroups, NET-hypergroups and regular hypergroups are systematically are investigated. Moreover, pure NET-semihypergroup and pure NET-hypergroup are investigated, and a strucuture theorem of commutative pure NET-semihypergroup is established. Finally, a new notion of weak commutative NET-semihypergroup is proposed, some important examples are obtained by software MATLAB, and the following important result is proved: every pure and weak commutative NET-semihypergroup is a disjoint union of some regular hypergroups which are its
subhypergroups.
វាយតម្លៃសៀវភៅអេឡិចត្រូនិកនេះ
ប្រាប់យើងអំពីការយល់ឃើញរបស់អ្នក។
អានព័ត៌មាន
ទូរសព្ទឆ្លាតវៃ និងថេប្លេត
ដំឡើងកម្មវិធី Google Play Books សម្រាប់ Android និង iPad/iPhone ។ វាធ្វើសមកាលកម្មដោយស្វ័យប្រវត្តិជាមួយគណនីរបស់អ្នក និងអនុញ្ញាតឱ្យអ្នកអានពេលមានអ៊ីនធឺណិត ឬគ្មានអ៊ីនធឺណិតនៅគ្រប់ទីកន្លែង។
កុំព្យូទ័រយួរដៃ និងកុំព្យូទ័រ
អ្នកអាចស្ដាប់សៀវភៅជាសំឡេងដែលបានទិញនៅក្នុង Google Play ដោយប្រើកម្មវិធីរុករកតាមអ៊ីនធឺណិតក្នុងកុំព្យូទ័ររបស់អ្នក។