Stochastic Integrals

┬╖ Probability and Mathematical Statistics рдкреБрд╕реНрддрдХ 5 ┬╖ Academic Press
рдЗ-рдкреБрд╕реНрддрдХ
154
рдкреГрд╖реНрдард╣рд░реВ
рдпреЛрдЧреНрдп
рд░реЗрдЯрд┐рдЩ рд░ рд░рд┐рднреНрдпреВрд╣рд░реВрдХреЛ рдкреБрд╖реНрдЯрд┐ рдЧрд░рд┐рдПрдХреЛ рд╣реБрдБрджреИрди ┬ардердк рдЬрд╛рдиреНрдиреБрд╣реЛрд╕реН

рдпреЛ рдЗ-рдкреБрд╕реНрддрдХрдХрд╛ рдмрд╛рд░реЗрдорд╛

Stochastic Integrals discusses one area of diffusion processes: the differential and integral calculus based upon the Brownian motion. The book reviews Gaussian families, construction of the Brownian motion, the simplest properties of the Brownian motion, Martingale inequality, and the law of the iterated logarithm. It also discusses the definition of the stochastic integral by Wiener and by Ito, the simplest properties of the stochastic integral according to Ito, and the solution of the simplest stochastic differential equation. The book explains diffusion, Lamperti's method, forward equation, Feller's test for the explosions, Cameron-Martin's formula, the Brownian local time, and the solution of dx=e(x) db + f(x) dt for coefficients with bounded slope. It also tackles Weyl's lemma, diffusions on a manifold, Hasminski's test for explosions, covering Brownian motions, Brownian motions on a Lie group, and Brownian motion of symmetric matrices. The book gives as example of a diffusion on a manifold with boundary the Brownian motion with oblique reflection on the closed unit disk of R squared. The text is suitable for economists, scientists, or researchers involved in probabilistic models and applied mathematics.

рдпреЛ рдЗ-рдкреБрд╕реНрддрдХрдХреЛ рдореВрд▓реНрдпрд╛рдЩреНрдХрди рдЧрд░реНрдиреБрд╣реЛрд╕реН

рд╣рд╛рдореАрд▓рд╛рдИ рдЖрдлреНрдиреЛ рдзрд╛рд░рдгрд╛ рдмрддрд╛рдЙрдиреБрд╣реЛрд╕реНред

рдЬрд╛рдирдХрд╛рд░реА рдкрдвреНрджреИ

рд╕реНрдорд╛рд░реНрдЯрдлреЛрди рддрдерд╛ рдЯреНрдпрд╛рдмрд▓реЗрдЯрд╣рд░реВ
Android рд░ iPad/iPhone рдХрд╛ рд▓рд╛рдЧрд┐┬аGoogle Play рдХрд┐рддрд╛рдм рдПрдк рдХреЛ рдЗрдиреНрд╕реНрдЯрд▓ рдЧрд░реНрдиреБрд╣реЛрд╕реНред рдпреЛ рддрдкрд╛рдИрдВрдХреЛ рдЦрд╛рддрд╛рд╕реЕрдВрдЧ рд╕реНрд╡рддрдГ рд╕рд┐рдВрдХ рд╣реБрдиреНрдЫ рд░ рддрдкрд╛рдИрдВ рдЕрдирд▓рд╛рдЗрди рд╡рд╛ рдЕрдлрд▓рд╛рдЗрди рдЬрд╣рд╛рдБ рднрдП рдкрдирд┐┬ардЕрдзреНрдпрдпрди рдЧрд░реНрди рджрд┐рдиреНрдЫред
рд▓реНрдпрд╛рдкрдЯрдк рддрдерд╛ рдХрдореНрдкреНрдпреБрдЯрд░рд╣рд░реВ
рддрдкрд╛рдИрдВ Google Play рдорд╛ рдЦрд░рд┐рдж рдЧрд░рд┐рдПрдХреЛ рдЕрдбрд┐рдпреЛрдмреБрдХ рдЖрдлреНрдиреЛ рдХрдореНрдкреНрдпреБрдЯрд░рдХреЛ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЬрд░ рдкреНрд░рдпреЛрдЧ рдЧрд░реЗрд░ рд╕реБрдиреНрди рд╕рдХреНрдиреБрд╣реБрдиреНрдЫред
eReaders рд░ рдЕрдиреНрдп рдЙрдкрдХрд░рдгрд╣рд░реВ
Kobo eReaders рдЬрд╕реНрддрд╛ e-ink рдбрд┐рднрд╛рдЗрд╕рд╣рд░реВрдорд╛ рдлрд╛рдЗрд▓ рдкрдвреНрди рддрдкрд╛рдИрдВрд▓реЗ рдлрд╛рдЗрд▓ рдбрд╛рдЙрдирд▓реЛрдб рдЧрд░реЗрд░ рдЙрдХреНрдд рдлрд╛рдЗрд▓ рдЖрдлреНрдиреЛ рдбрд┐рднрд╛рдЗрд╕рдорд╛ рдЯреНрд░рд╛рдиреНрд╕реНрдлрд░ рдЧрд░реНрдиреБ рдкрд░реНрдиреЗ рд╣реБрдиреНрдЫред рддреА рдлрд╛рдЗрд▓рд╣рд░реВ рдкрдвреНрди рдорд┐рд▓реНрдиреЗ рдЗрдмреБрдХ рд░рд┐рдбрд░рд╣рд░реВрдорд╛ рддреА рдлрд╛рдЗрд▓рд╣рд░реВ рдЯреНрд░рд╛рдиреНрд╕реНрдлрд░ рдЧрд░реНрдиреЗрд╕рдореНрдмрдиреНрдзреА рд╡рд┐рд╕реНрддреГрдд рдирд┐рд░реНрджреЗрд╢рдирд╣рд░реВ рдкреНрд░рд╛рдкреНрдд рдЧрд░реНрди рдорджреНрджрдд рдХреЗрдиреНрджреНрд░ рдорд╛ рдЬрд╛рдиреБрд╣реЛрд╕реНред

рдпреЛ рд╢реГрдЩреНрдЦрд▓рд╛рдХрд╛ рдмрд╛рдБрдХреА рдкреБрд╕реНрддрдХ рдкрдвреНрдиреБрд╣реЛрд╕реН

H. P. McKean рджреНрд╡рд░рд╛ рдердк

рдЙрд╕реНрддреИ рдЗ-рдкреБрд╕реНрддрдХрд╣рд░реВ