Spinors in Hilbert Space

Β· Springer Science & Business Media
Π•-књига
91
Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†Π°
ΠžΡ†Π΅Π½Π΅ ΠΈ Ρ€Π΅Ρ†Π΅Π½Π·ΠΈΡ˜Π΅ нису Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½Π΅ Β Π‘Π°Π·Π½Π°Ρ˜Ρ‚Π΅ вишС

О овој С-књизи

1. Hilbert Space The words "Hilbert space" here will always denote what math ematicians call a separable Hilbert space. It is composed of vectors each with a denumerable infinity of coordinates ql' q2' Q3, .... Usually the coordinates are considered to be complex numbers and each vector has a squared length ~rIQrI2. This squared length must converge in order that the q's may specify a Hilbert vector. Let us express qr in terms of real and imaginary parts, qr = Xr + iYr' Then the squared length is l:.r(x; + y;). The x's and y's may be looked upon as the coordinates of a vector. It is again a Hilbert vector, but it is a real Hilbert vector, with only real coordinates. Thus a complex Hilbert vector uniquely determines a real Hilbert vector. The second vector has, at first sight, twice as many coordinates as the first one. But twice a denumerable in finity is again a denumerable infinity, so the second vector has the same number of coordinates as the first. Thus a complex Hilbert vector is not a more general kind of quantity than a real one.

ΠžΡ†Π΅Π½ΠΈΡ‚Π΅ ΠΎΠ²Ρƒ Π΅-ΠΊΡšΠΈΠ³Ρƒ

ΠˆΠ°Π²ΠΈΡ‚Π΅ Π½Π°ΠΌ својС ΠΌΠΈΡˆΡ™Π΅ΡšΠ΅.

Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ˜Π΅ ΠΎ Ρ‡ΠΈΡ‚Π°ΡšΡƒ

ΠŸΠ°ΠΌΠ΅Ρ‚Π½ΠΈ Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½ΠΈ ΠΈ Ρ‚Π°Π±Π»Π΅Ρ‚ΠΈ
Π˜Π½ΡΡ‚Π°Π»ΠΈΡ€Π°Ρ˜Ρ‚Π΅ Π°ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΡ˜Ρƒ Google Play књигС Π·Π° Android ΠΈ iPad/iPhone. Аутоматски сС ΡΠΈΠ½Ρ…Ρ€ΠΎΠ½ΠΈΠ·ΡƒΡ˜Π΅ са Π½Π°Π»ΠΎΠ³ΠΎΠΌ ΠΈ ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° Π²Π°ΠΌ Π΄Π° Ρ‡ΠΈΡ‚Π°Ρ‚Π΅ онлајн ΠΈ ΠΎΡ„Π»Π°Ρ˜Π½ Π³Π΄Π΅ Π³ΠΎΠ΄ Π΄Π° сС Π½Π°Π»Π°Π·ΠΈΡ‚Π΅.
Π›Π°ΠΏΡ‚ΠΎΠΏΠΎΠ²ΠΈ ΠΈ Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€ΠΈ
ΠœΠΎΠΆΠ΅Ρ‚Π΅ Π΄Π° ΡΠ»ΡƒΡˆΠ°Ρ‚Π΅ Π°ΡƒΠ΄ΠΈΠΎ-књигС ΠΊΡƒΠΏΡ™Π΅Π½Π΅ Π½Π° Google Play-Ρƒ ΠΏΠΎΠΌΠΎΡ›Ρƒ Π²Π΅Π±-ΠΏΡ€Π΅Π³Π»Π΅Π΄Π°Ρ‡Π° Π½Π° Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Ρƒ.
Π•-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈ ΡƒΡ€Π΅Ρ’Π°Ρ˜ΠΈ
Π”Π° бистС Ρ‡ΠΈΡ‚Π°Π»ΠΈ Π½Π° ΡƒΡ€Π΅Ρ’Π°Ρ˜ΠΈΠΌΠ° којС користС Π΅-мастило, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ су Kobo Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ, Ρ‚Ρ€Π΅Π±Π° Π΄Π° ΠΏΡ€Π΅ΡƒΠ·ΠΌΠ΅Ρ‚Π΅ Ρ„Π°Ρ˜Π» ΠΈ прСнСсСтС Π³Π° Π½Π° ΡƒΡ€Π΅Ρ’Π°Ρ˜. ΠŸΡ€Π°Ρ‚ΠΈΡ‚Π΅ Π΄Π΅Ρ‚Π°Ρ™Π½Π° упутства ΠΈΠ· Ρ†Π΅Π½Ρ‚Ρ€Π° Π·Π° ΠΏΠΎΠΌΠΎΡ› Π΄Π° бистС ΠΏΡ€Π΅Π½Π΅Π»ΠΈ Ρ„Π°Ρ˜Π»ΠΎΠ²Π΅ Ρƒ ΠΏΠΎΠ΄Ρ€ΠΆΠ°Π½Π΅ Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡Π΅.