Source Separation and Machine Learning

· Academic Press
电子书
384
符合条件
评分和评价未经验证  了解详情

关于此电子书

Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches using the latest information on mixture signals to build a BSS model that is seen as a statistical model for a whole system. Looking at different models, including independent component analysis (ICA), nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and deep neural network (DNN), the book addresses how they have evolved to deal with multichannel and single-channel source separation. - Emphasizes the modern model-based Blind Source Separation (BSS) which closely connects the latest research topics of BSS and Machine Learning - Includes coverage of Bayesian learning, sparse learning, online learning, discriminative learning and deep learning - Presents a number of case studies of model-based BSS (categorizing them into four modern models - ICA, NMF, NTF and DNN), using a variety of learning algorithms that provide solutions for the construction of BSS systems

作者简介

Jen-Tzung Chien received his Ph.D. in electrical engineering from National Tsing Hua University, Taiwan in 1997. He is now with the Department of Electrical and Computer Engineering and the Department of Computer Science at the National Chiao Tung University, Taiwan, where he is currently the Chair Professor. He was the visiting professor at the IBM T. J. Watson Research Center, Yorktown Heights, NY in 2010. Dr. Chien has served as the associate editor of the IEEE Signal Processing Letters in 2008-2011, the tutorial speaker of the ICASSP in 2012, 2015, 2017, the INTERSPEECH in 2013, 2016, the COLING in 2018, and the general chair of the IEEE International Workshop on Machine Learning for Signal Processing in 2017. He received the Best Paper Award of the IEEE Automatic Speech Recognition and Understanding Workshop in 2011 and the AAPM Farrington Daniels Paper Award in 2018. He is currently serving as an elected member of the IEEE Machine Learning for Signal Processing Technical Committee.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。