Source Separation and Machine Learning

· Academic Press
E-knjiga
384
Stranica
Ispunjava uslove
Ocene i recenzije nisu verifikovane  Saznajte više

O ovoj e-knjizi

Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches using the latest information on mixture signals to build a BSS model that is seen as a statistical model for a whole system. Looking at different models, including independent component analysis (ICA), nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and deep neural network (DNN), the book addresses how they have evolved to deal with multichannel and single-channel source separation. - Emphasizes the modern model-based Blind Source Separation (BSS) which closely connects the latest research topics of BSS and Machine Learning - Includes coverage of Bayesian learning, sparse learning, online learning, discriminative learning and deep learning - Presents a number of case studies of model-based BSS (categorizing them into four modern models - ICA, NMF, NTF and DNN), using a variety of learning algorithms that provide solutions for the construction of BSS systems

O autoru

Jen-Tzung Chien received his Ph.D. in electrical engineering from National Tsing Hua University, Taiwan in 1997. He is now with the Department of Electrical and Computer Engineering and the Department of Computer Science at the National Chiao Tung University, Taiwan, where he is currently the Chair Professor. He was the visiting professor at the IBM T. J. Watson Research Center, Yorktown Heights, NY in 2010. Dr. Chien has served as the associate editor of the IEEE Signal Processing Letters in 2008-2011, the tutorial speaker of the ICASSP in 2012, 2015, 2017, the INTERSPEECH in 2013, 2016, the COLING in 2018, and the general chair of the IEEE International Workshop on Machine Learning for Signal Processing in 2017. He received the Best Paper Award of the IEEE Automatic Speech Recognition and Understanding Workshop in 2011 and the AAPM Farrington Daniels Paper Award in 2018. He is currently serving as an elected member of the IEEE Machine Learning for Signal Processing Technical Committee.

Ocenite ovu e-knjigu

Javite nam svoje mišljenje.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play knjige za Android i iPad/iPhone. Automatski se sinhronizuje sa nalogom i omogućava vam da čitate onlajn i oflajn gde god da se nalazite.
Laptopovi i računari
Možete da slušate audio-knjige kupljene na Google Play-u pomoću veb-pregledača na računaru.
E-čitači i drugi uređaji
Da biste čitali na uređajima koje koriste e-mastilo, kao što su Kobo e-čitači, treba da preuzmete fajl i prenesete ga na uređaj. Pratite detaljna uputstva iz centra za pomoć da biste preneli fajlove u podržane e-čitače.