Solving Transcendental Equations: The Chebyshev Polynomial Proxy and Other Numerical Rootfinders, Perturbation Series, and Oracles

· Other Titles in Applied Mathematics Βιβλίο 137 · SIAM
ebook
478
Σελίδες
Κατάλληλο
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

Transcendental equations arise in every branch of science and engineering. While most of these equations are easy to solve, some are not, and that is where this book serves as the mathematical equivalent of a skydiver's reserve parachute?not always needed, but indispensable when it is. The author?s goal is to teach the art of finding the root of a single algebraic equation or a pair of such equations.

Solving Transcendental Equations?is unique in that it is the first book to describe the Chebyshev-proxy rootfinder, which is the most reliable way to find all zeros of a smooth function on the interval, and the very reliable spectrally enhanced Weyl bisection/marching triangles method for bivariate rootfinding, and it includes three chapters on analytical methods?explicit solutions, regular pertubation expansions, and singular perturbation series (including hyperasymptotics)?unlike other books that give only numerical algorithms for solving algebraic and transcendental equations. This book is written for specialists in numerical analysis and will also appeal to mathematicians in general. It can be used for introductory and advanced numerical analysis classes, and as a reference for engineers and others working with difficult equations.

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.

Συνεχίστε τη σειρά

Περισσότερα από τον χρήστη John P. Boyd

Παρόμοια ebook