Smarandache Fuzzy Algebra

· Infinite Study
E-kirja
453
sivuja
Kelvollinen
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

The author studies the Smarandache Fuzzy Algebra, which, like its predecessor Fuzzy Algebra, arose from the need to define structures that were more compatible with the real world where the grey areas mattered, not only black or white.In any human field, a Smarandache n-structure on a set S means a weak structure {w(0)} on S such that there exists a chain of proper subsets P(n-1) in P(n-2) in?in P(2) in P(1) in S whose corresponding structures verify the chain {w(n-1)} includes {w(n-2)} includes? includes {w(2)} includes {w(1)} includes {w(0)}, where 'includes' signifies 'strictly stronger' (i.e., structure satisfying more axioms).This book is referring to a Smarandache 2-algebraic structure (two levels only of structures in algebra) on a set S, i.e. a weak structure {w(0)} on S such that there exists a proper subset P of S, which is embedded with a stronger structure {w(1)}. Properties of Smarandache fuzzy semigroups, groupoids, loops, bigroupoids, biloops, non-associative rings, birings, vector spaces, semirings, semivector spaces, non-associative semirings, bisemirings, near-rings, non-associative near-ring, and binear-rings are presented in the second part of this book together with examples, solved and unsolved problems, and theorems. Also, applications of Smarandache groupoids, near-rings, and semirings in automaton theory, in error correcting codes, and in the construction of S-sub-biautomaton can be found in the last chapter.

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.