Silicon Nanowire Transistors

· Springer
5.0
1 条评价
电子书
165
评分和评价未经验证  了解详情

关于此电子书

This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI.

评分和评价

5.0
1 条评价

作者简介

Ahmet Bindal received his M.S. and Ph.D. degrees in Electrical Engineering Department from the University of California, Los Angeles CA. His doctoral research was the material characterization and analysis of HEMT GaAs transistors. During his graduate studies, he was a research associate and technical consultant for Hughes Aircraft Co. In 1988, he joined the technical staff of IBM Research and Development Center in Fishkill, NY, where he worked as a device design and characterization engineer. He developed asymmetrical MOS transistors and ultra thin Silicon-On-Insulator (SOI) technologies for IBM. In 1993, he transferred to IBM in Rochester, MN, as a senior circuit design engineer to work on the floating-point unit for AS-400 main frame processor. He continued his circuit design career at Intel Corporation in Santa Clara, CA, where he designed 16-bit packed multipliers and adders for the MMX unit for Pentium II processors. In 1996, he joined Philips Semiconductors in Sunnyvale, CA, where he was involved in the designs of instruction and data caches, and various SRAM modules for the Trimedia processor. His involvement with VLSI architecture also started in Philips Semiconductors and led to the design of the Video-Out unit for the same processor. In 1998, he joined Cadence Design Systems as a VLSI architect and directed a team of engineers to design self-timed asynchronous processors. After approximately 20 years of industry work, he joined the Computer Engineering faculty at San Jose State University in 2002. His current research interests range from nano-scale electron devices to nano-scale architectures and robotics. Dr. Bindal has over 30 refereed scientific publications and 10 invention disclosures with IBM. He currently holds three U.S. patents with IBM and one with Intel Corporation.Dr. Hamedi-Hagh received his Ph.D. from the University of Toronto, Canada in 2004. He joined the Electrical Engineering Department at San Jose State University (SJSU) in 2005. His areas of research and expertise include high frequency modeling of semiconductor device structures and design of Radio Frequency, Analog and Mixed-Signal integrated circuits for wireless and wireline communication systems. Dr. Hamedi-Hagh has developed the Radio Frequency Integrated Circuits laboratory and curriculum at both graduate and undergraduate levels with over $0.5M research funding and through close collaborations with industries. He has received several California State University (CSU) professional development grants, CSU Research Funds, Research, Scholarship and Creative Activity (RSCA) grants, SJSU Planning Council Grants, College of Engineering professional development grants and Junior Faculty Career Development Grants. He is a founding member of SJSU Smart Technology and Computing Center for Complex Systems (STCCS). In 2016, he was appointed as the Mixed-Signal endowed chair of the Electrical Engineering department. Dr. Hamedi-Hagh has over 30 refereed scientific journal and conference paper publications in prestigious national and international Institutes and societies. He received the best paper award at the Micronet Symposium in Quebec, Canada in 2001 and the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications in Barcelona, Spain in 2004. Dr. Hamedi-Hagh has advised several hundred projects on design of integrated circuits and systems. He holds seven US and world patents on wireless circuits, systems and cryptography. His latest patent introduces suspendance® and trajectance® laws as alternatives to Kirchhoff’s laws for circuit analysis.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。