Proof Analysis: A Contribution to Hilbert's Last Problem

·
· Cambridge University Press
Ebook
279
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This book continues from where the authors' previous book, Structural Proof Theory, ended. It presents an extension of the methods of analysis of proofs in pure logic to elementary axiomatic systems and to what is known as philosophical logic. A self-contained brief introduction to the proof theory of pure logic is included that serves both the mathematically and philosophically oriented reader. The method is built up gradually, with examples drawn from theories of order, lattice theory and elementary geometry. The aim is, in each of the examples, to help the reader grasp the combinatorial behaviour of an axiom system, which typically leads to decidability results. The last part presents, as an application and extension of all that precedes it, a proof-theoretical approach to the Kripke semantics of modal and related logics, with a great number of new results, providing essential reading for mathematical and philosophical logicians.

About the author

Sara Negri is Docent of Logic at the University of Helsinki. She is the author of Structural Proof Theory (Cambridge University Press, 2001, with Jan von Plato) and she has also written several research papers on mathematical and philosophical logic.

Jan von Plato is Professor of Philosophy at the University of Helsinki. He is the author of Creating Modern Probability (Cambridge University Press, 1994), the co-author (with Sara Negri) of Structural Proof Theory (Cambridge University Press, 2001) and has written several papers on logic and epistemology.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.