SageMaker Deployment and Development: Definitive Reference for Developers and Engineers

· HiTeX Press
eBook
250
Halaman
Memenuhi syarat
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

"SageMaker Deployment and Development"
"SageMaker Deployment and Development" is an authoritative guide to mastering the full spectrum of machine learning (ML) workflows using AWS SageMaker. This comprehensive book dives deep into SageMaker’s modular architecture, unraveling the intricacies of its core components such as Studio, Training, Inference, Processing, and Feature Store. Readers acquire actionable insights into managing containerized environments, integrating with the broader AWS ecosystem, and architecting data flows for scalability, security, and efficiency. Advanced discussions explore distributed computing strategies, cost optimization, and high-performance resource management—enabling ML professionals to build robust, enterprise-grade deployments.
The volume thoroughly addresses advanced model development workflows, guiding practitioners from experiment tracking and custom algorithm containers to hyperparameter optimization and versioned feature engineering. Readers will discover best practices for reproducibility, environment management, and multi-framework integration with leading ML libraries such as PyTorch, TensorFlow, and Scikit-learn. Rich coverage of data engineering tackles automated pipelines, batch and streaming data integration, and seamless connections to data lakes and warehouses, all underpinned by stringent quality, validation, and auditability principles.
Recognizing the demands of operating ML in production, the book dedicates extensive chapters to security, compliance, and governance, offering practical solutions for regulated industries and multi-tenant environments. It surveys the state of MLOps with hands-on techniques for CI/CD, automated testing, and controlled model promotion. Techniques for large-scale, distributed training, inference endpoint management, monitoring, and drift detection are paired with insights into extensibility, custom integrations, and future trends. Whether you’re a data scientist, ML engineer, or cloud architect, "SageMaker Deployment and Development" equips you with the knowledge and skills to deliver secure, scalable, and future-proof ML solutions on AWS.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.