Robotic Tactile Sensing: Technologies and System

·
· Springer Science & Business Media
电子书
248
评分和评价未经验证  了解详情

关于此电子书

Future robots are expected to work closely and interact safely with real-world objects and humans alike. Sense of touch is important in this context, as it helps estimate properties such as shape, texture, hardness, material type and many more; provides action related information, such as slip detection; and helps carrying out actions such as rolling an object between fingers without dropping it. This book presents an in-depth description of the solutions available for gathering tactile data, obtaining aforementioned tactile information from the data and effectively using the same in various robotic tasks.

The efforts during last four decades or so have yielded a wide spectrum of tactile sensing technologies and engineered solutions for both intrinsic and extrinsic touch sensors. Nowadays, new materials and structures are being explored for obtaining robotic skin with physical features like bendable, conformable, and stretchable. Such features are important for covering various body parts of robots or 3D surfaces. Nonetheless, there exist many more hardware, software and application related issues that must be considered to make tactile sensing an effective component of future robotic platforms. This book presents an in-depth analysis of various system related issues and presents the trade-offs one may face while developing an effective tactile sensing system. For this purpose, human touch sensing has also been explored. The design hints coming out of the investigations into human sense of touch can be useful in improving the effectiveness of tactile sensory modality in robotics and other machines. Better integration of tactile sensors on a robot’s body is prerequisite for the effective utilization of tactile data.

The concept of semiconductor devices based sensors is an interesting one, as it allows compact and fast tactile sensing systems with capabilities such as human-like spatio-temporal resolution. This book presents acomprehensive description of semiconductor devices based tactile sensing. In particular, novel Piezo Oxide Semiconductor Field Effect Transistor (POSFET) based approach for high resolution tactile sensing has been discussed in detail. Finally, the extension of semiconductors devices based sensors concept to large and flexile areas has been discussed for obtaining robotic or electronic skin.

With its multidisciplinary scope, this book is suitable for graduate students and researchers coming from diverse areas such robotics (bio-robots, humanoids, rehabilitation etc.), applied materials, humans touch sensing, electronics, microsystems, and instrumentation. To better explain the concepts the text is supported by large number of figures.

作者简介

R. S. Dahiya is a Marie Curie fellow at Fondazione Bruno Kessler, Trento, Italy. He received PhD in humanoid technologies from University of Genoa and Italian Institute of Technology, Italy. He was awarded University Gold Medal and received best paper awards on two occasions in IEEE sponsored national and international conferences. His research interests include electronic skin, tactile sensing, flexible electronics and sensors, and Microsystems. Dr. Dahiya is the author of more than 60 scientific papers. He has edited two special journal issues on the topics covered in this book. He has worked on many national and European projects. He has also been the leader of individual and multi-partner European Commission funded projects.

M. Valle is associate professor in electronics at Faculty of Engineering, University of Genoa. He coordinates the microelectronics lab at DITEN. He has supervised many research projects funded by local, national and European funding bodies. His research interests include embedded electronics, microelectronic systems, wireless sensors networks and tactile sensing systems for robots. Prof. Valle is author of more than 150 scientific papers.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。