Riemannian Geometry

· ·
· Springer Science & Business Media
2,0
1 avis
E-book
248
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

Traditional point of view: pinched manifolds 147 Almost flat pinching 148 Coarse point of view: compactness theorems of Gromov and Cheeger 149 K. CURVATURE AND REPRESENTATIONS OF THE ORTHOGONAL GROUP Decomposition of the space of curvature tensors 150 Conformally flat manifolds 153 The second Bianchi identity 154 CHAPITRE IV : ANALYSIS ON MANIFOLDS AND THE RICCI CURVATURE A. MANIFOLDS WITH BOUNDARY Definition 155 The Stokes theorem and integration by parts 156 B. BISHOP'S INEQUALITY REVISITED 159 Some commutations formulas Laplacian of the distance function 160 Another proof of Bishop's inequality 161 The Heintze-Karcher inequality 162 C. DIFFERENTIAL FORMS AND COHOMOLOGY The de Rham complex 164 Differential operators and their formal adjoints 165 The Hodge-de Rham theorem 167 A second visit to the Bochner method 168 D. BASIC SPECTRAL GEOMETRY 170 The Laplace operator and the wave equation Statement of the basic results on the spectrum 172 E. SOME EXAMPLES OF SPECTRA 172 Introduction The spectrum of flat tori 174 175 Spectrum of (sn, can) F. THE MINIMAX PRINCIPLE 177 The basic statements VIII G. THE RICCI CURVATURE AND EIGENVALUES ESTIMATES Introduction 181 Bishop's inequality and coarse estimates 181 Some consequences of Bishop's theorem 182 Lower bounds for the first eigenvalue 184 CHAPTER V : RIEMANNIAN SUBMANIFOLDS A. CURVATURE OF SUBMANIFOLDS Introduction 185 Second fundamental form 185 Curvature of hypersurfaces 187 Application to explicit computations of curvature 189 B. CURVATURE AND CONVEXITY 192 The Hadamard theorem C.

Notes et avis

2,0
1 avis

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.