Reservoir Simulations: Machine Learning and Modeling

·
· Gulf Professional Publishing
eBook
340
หน้า
มีสิทธิ์
คะแนนและรีวิวไม่ได้รับการตรวจสอบยืนยัน  ดูข้อมูลเพิ่มเติม

เกี่ยวกับ eBook เล่มนี้

Reservoir Simulation: Machine Learning and Modeling helps the engineer step into the current and most popular advances in reservoir simulation, learning from current experiments and speeding up potential collaboration opportunities in research and technology. This reference explains common terminology, concepts, and equations through multiple figures and rigorous derivations, better preparing the engineer for the next step forward in a modeling project and avoid repeating existing progress. Well-designed exercises, case studies and numerical examples give the engineer a faster start on advancing their own cases. Both computational methods and engineering cases are explained, bridging the opportunities between computational science and petroleum engineering. This book delivers a critical reference for today's petroleum and reservoir engineer to optimize more complex developments. - Understand commonly used and recent progress on definitions, models, and solution methods used in reservoir simulation - World leading modeling and algorithms to study flow and transport behaviors in reservoirs, as well as the application of machine learning - Gain practical knowledge with hand-on trainings on modeling and simulation through well designed case studies and numerical examples.

เกี่ยวกับผู้แต่ง

Shuyu Sun is currently the Director of the Computational Transport Phenomena Laboratory (CTPL) at King Abdullah University of Science and Technology (KAUST) and a Co-Director of the Center for Subsurface Imaging and Fluid Modeling consortium (CSIM) at KAUST. He obtained his Ph.D. degree in computational and applied mathematics from The University of Texas at Austin. His research includes the modelling and simulation of porous media flow at Darcy scales, pore scales and molecular scales. Professor Sun has published about 400 articles, including 220+ refereed journal papersTao Zhang is currently a PhD candidate at King Abdullah University of Science and Technology (KAUST), Earth Science and Engineering, researching computational fluid dynamics and thermodynamics in reservoirs, as well as geological data analysis. Tao's research specialties also include deep learning and AI in reservoir simulation. He earned a master's and a Bachelor of Engineering in storage and transportation of oil and gas, both from China University of Petroleum in Beijing

ให้คะแนน eBook นี้

แสดงความเห็นของคุณให้เรารับรู้

ข้อมูลในการอ่าน

สมาร์ทโฟนและแท็บเล็ต
ติดตั้งแอป Google Play Books สำหรับ Android และ iPad/iPhone แอปจะซิงค์โดยอัตโนมัติกับบัญชีของคุณ และช่วยให้คุณอ่านแบบออนไลน์หรือออฟไลน์ได้ทุกที่
แล็ปท็อปและคอมพิวเตอร์
คุณฟังหนังสือเสียงที่ซื้อจาก Google Play โดยใช้เว็บเบราว์เซอร์ในคอมพิวเตอร์ได้
eReader และอุปกรณ์อื่นๆ
หากต้องการอ่านบนอุปกรณ์ e-ink เช่น Kobo eReader คุณจะต้องดาวน์โหลดและโอนไฟล์ไปยังอุปกรณ์ของคุณ โปรดทำตามวิธีการอย่างละเอียดในศูนย์ช่วยเหลือเพื่อโอนไฟล์ไปยัง eReader ที่รองรับ