Reservoir Simulations: Machine Learning and Modeling

·
· Gulf Professional Publishing
eBook
340
Halaman
Memenuhi syarat
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

Reservoir Simulation: Machine Learning and Modeling helps the engineer step into the current and most popular advances in reservoir simulation, learning from current experiments and speeding up potential collaboration opportunities in research and technology. This reference explains common terminology, concepts, and equations through multiple figures and rigorous derivations, better preparing the engineer for the next step forward in a modeling project and avoid repeating existing progress. Well-designed exercises, case studies and numerical examples give the engineer a faster start on advancing their own cases. Both computational methods and engineering cases are explained, bridging the opportunities between computational science and petroleum engineering. This book delivers a critical reference for today's petroleum and reservoir engineer to optimize more complex developments. - Understand commonly used and recent progress on definitions, models, and solution methods used in reservoir simulation - World leading modeling and algorithms to study flow and transport behaviors in reservoirs, as well as the application of machine learning - Gain practical knowledge with hand-on trainings on modeling and simulation through well designed case studies and numerical examples.

Tentang pengarang

Shuyu Sun is currently the Director of the Computational Transport Phenomena Laboratory (CTPL) at King Abdullah University of Science and Technology (KAUST) and a Co-Director of the Center for Subsurface Imaging and Fluid Modeling consortium (CSIM) at KAUST. He obtained his Ph.D. degree in computational and applied mathematics from The University of Texas at Austin. His research includes the modelling and simulation of porous media flow at Darcy scales, pore scales and molecular scales. Professor Sun has published about 400 articles, including 220+ refereed journal papersTao Zhang is currently a PhD candidate at King Abdullah University of Science and Technology (KAUST), Earth Science and Engineering, researching computational fluid dynamics and thermodynamics in reservoirs, as well as geological data analysis. Tao's research specialties also include deep learning and AI in reservoir simulation. He earned a master's and a Bachelor of Engineering in storage and transportation of oil and gas, both from China University of Petroleum in Beijing

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.