Real Algebra: A First Course

· Springer Nature
eBook
206
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

This book provides an introduction to fundamental methods and techniques of algebra over ordered fields. It is a revised and updated translation of the classic textbook Einführung in die reelle Algebra. Beginning with the basics of ordered fields and their real closures, the book proceeds to discuss methods for counting the number of real roots of polynomials. Followed by a thorough introduction to Krull valuations, this culminates in Artin's solution of Hilbert's 17th Problem. Next, the fundamental concept of the real spectrum of a commutative ring is introduced with applications. The final chapter gives a brief overview of important developments in real algebra and geometry—as far as they are directly related to the contents of the earlier chapters—since the publication of the original German edition. Real Algebra is aimed at advanced undergraduate and beginning graduate students who have a good grounding in linear algebra, field theory and ring theory. It also provides a carefully written reference for specialists in real algebra, real algebraic geometry and related fields.

Acerca del autor

​Manfred Knebusch is Professor Emeritus at the University of Regensburg. He has written nine books and more than 80 papers on the algebraic theory of quadratic forms over rings and fields, valuation theory, real algebra and real algebraic geometry. His current research focusses on tropical geometry.
Claus Scheiderer is Professor at Konstanz University. His primary research interests are real algebraic geometry and convex algebraic geometry.
Thomas Unger is Associate Professor at University College Dublin. His research interests include quadratic and hermitian forms, algebras with involution, and noncommutative real algebra and geometry.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.