Random Forests with R

┬╖
┬╖ Springer Nature
рдИ-рдкреБрд╕реНрддрдХ
98
рдкреЗрдЬ
рд░реЗрдЯрд┐рдВрдЧ рдЖрдгрд┐ рдкрд░реАрдХреНрд╖рдгреЗ рдпрд╛рдВрдЪреА рдкрдбрддрд╛рд│рдгреА рдХреЗрд▓реЗрд▓реА рдирд╛рд╣реА ┬ардЕрдзрд┐рдХ рдЬрд╛рдгреВрди рдШреНрдпрд╛

рдпрд╛ рдИ-рдкреБрд╕реНрддрдХрд╛рд╡рд┐рд╖рдпреА

This book offers an application-oriented guide to random forests: a statistical learning method extensively used in many fields of application, thanks to its excellent predictive performance, but also to its flexibility, which places few restrictions on the nature of the data used. Indeed, random forests can be adapted to both supervised classification problems and regression problems. In addition, they allow us to consider qualitative and quantitative explanatory variables together, without pre-processing. Moreover, they can be used to process standard data for which the number of observations is higher than the number of variables, while also performing very well in the high dimensional case, where the number of variables is quite large in comparison to the number of observations. Consequently, they are now among the preferred methods in the toolbox of statisticians and data scientists. The book is primarily intended for students in academic fields such as statistical education, but also for practitioners in statistics and machine learning. A scientific undergraduate degree is quite sufficient to take full advantage of the concepts, methods, and tools discussed. In terms of computer science skills, little background knowledge is required, though an introduction to the R language is recommended.

Random forests are part of the family of tree-based methods; accordingly, after an introductory chapter, Chapter 2 presents CART trees. The next three chapters are devoted to random forests. They focus on their presentation (Chapter 3), on the variable importance tool (Chapter 4), and on the variable selection problem (Chapter 5), respectively. After discussing the concepts and methods, we illustrate their implementation on a running example. Then, various complements are provided before examining additional examples. Throughout the book, each result is given together with the code (in R) that can be used to reproduce it. Thus, the book offers readersessential information and concepts, together with examples and the software tools needed to analyse data using random forests.

рд▓реЗрдЦрдХрд╛рд╡рд┐рд╖рдпреА

Robin Genuer is an Assistant Professor of Statistics at the University of Bordeaux and a member of the Inserm U1219 and Inria Bordeaux Sud-Ouest research centres.

Jean-Michel Poggi is a Professor of Statistics at the University of Paris and member of the LMO, the Orsay Mathematics Laboratory (University of Paris Saclay).

They have both produced various research works on random forests and have given numerous lectures and talks on the subject. They have also taught postgraduate and doctoral courses for a variety of audiences. Lastly, they have developed the R package VSURF


рдпрд╛ рдИ-рдкреБрд╕реНрддрдХрд▓рд╛ рд░реЗрдЯрд┐рдВрдЧ рджреНрдпрд╛

рддреБрдореНрд╣рд╛рд▓рд╛ рдХрд╛рдп рд╡рд╛рдЯрддреЗ рддреЗ рдЖрдореНрд╣рд╛рд▓рд╛ рд╕рд╛рдВрдЧрд╛.

рд╡рд╛рдЪрди рдорд╛рд╣рд┐рддреА

рд╕реНрдорд╛рд░реНрдЯрдлреЛрди рдЖрдгрд┐ рдЯреЕрдмрд▓реЗрдЯ
Android рдЖрдгрд┐ iPad/iPhone рд╕рд╛рдареА Google Play рдмреБрдХ рдЕтАНреЕрдк рдЗрдВрд╕реНтАНрдЯреЙрд▓ рдХрд░рд╛. рд╣реЗ рддреБрдордЪреНтАНрдпрд╛ рдЦрд╛рддреНтАНрдпрд╛рдиреЗ рдЖрдкреЛрдЖрдк рд╕рд┐рдВрдХ рд╣реЛрддреЗ рдЖрдгрд┐ рддреБрдореНтАНрд╣реА рдЬреЗрдереЗ рдХреБрдареЗ рдЕрд╕рд╛рд▓ рддреЗрдереВрди рддреБрдореНтАНрд╣рд╛рд▓рд╛ рдСрдирд▓рд╛рдЗрди рдХрд┐рдВрд╡рд╛ рдСрдлрд▓рд╛рдЗрди рд╡рд╛рдЪрдгреНтАНрдпрд╛рдЪреА рдЕрдиреБрдорддреА рджреЗрддреЗ.
рд▓реЕрдкрдЯреЙрдк рдЖрдгрд┐ рдХреЙрдВрдкреНрдпреБрдЯрд░
рддреБрдореНрд╣реА рддреБрдордЪреНрдпрд╛ рдХрд╛рдБрдкреНрдпреБрдЯрд░рдЪрд╛ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЭрд░ рд╡рд╛рдкрд░реВрди Google Play рд╡рд░ рдЦрд░реЗрджреА рдХреЗрд▓реЗрд▓реА рдСрдбрд┐рдУрдмреБрдХ рдРрдХреВ рд╢рдХрддрд╛.
рдИрд╡рд╛рдЪрдХ рдЖрдгрд┐ рдЗрддрд░ рдбрд┐рд╡реНрд╣рд╛рдЗрд╕реЗрд╕
Kobo eReaders рд╕рд╛рд░рдЦреНрдпрд╛ рдИ-рдЗрдВрдХ рдбрд┐рд╡реНтАНрд╣рд╛рдЗрд╕рд╡рд░ рд╡рд╛рдЪрдгреНтАНрдпрд╛рд╕рд╛рдареА, рддреБрдореНрд╣реА рдПрдЦрд╛рджреА рдлрд╛рдЗрд▓ рдбрд╛рдЙрдирд▓реЛрдб рдХрд░реВрди рддреА рддреБрдордЪреНтАНрдпрд╛ рдбрд┐рд╡реНтАНрд╣рд╛рдЗрд╕рд╡рд░ рдЯреНрд░рд╛рдиреНрд╕рдлрд░ рдХрд░рдгреЗ рдЖрд╡рд╢реНрдпрдХ рдЖрд╣реЗ. рд╕рдкреЛрд░реНрдЯ рдЕрд╕рд▓реЗрд▓реНрдпрд╛ eReaders рд╡рд░ рдлрд╛рдЗрд▓ рдЯреНрд░рд╛рдиреНрд╕рдлрд░ рдХрд░рдгреНрдпрд╛рд╕рд╛рдареА, рдорджрдд рдХреЗрдВрджреНрд░ рдордзреАрд▓ рддрдкрд╢реАрд▓рд╡рд╛рд░ рд╕реВрдЪрдирд╛ рдлреЙрд▓реЛ рдХрд░рд╛.