Python Data Analysis: Edition 2

· Packt Publishing Ltd
电子书
330
评分和评价未经验证  了解详情

关于此电子书

Learn how to apply powerful data analysis techniques with popular open source Python modulesAbout This BookFind, manipulate, and analyze your data using the Python 3.5 librariesPerform advanced, high-performance linear algebra and mathematical calculations with clean and efficient Python codeAn easy-to-follow guide with realistic examples that are frequently used in real-world data analysis projects.Who This Book Is For

This book is for programmers, scientists, and engineers who have the knowledge of Python and know the basics of data science. It is for those who wish to learn different data analysis methods using Python 3.5 and its libraries. This book contains all the basic ingredients you need to become an expert data analyst.

What You Will LearnInstall open source Python modules such NumPy, SciPy, Pandas, stasmodels, scikit-learn,theano, keras, and tensorflow on various platformsPrepare and clean your data, and use it for exploratory analysisManipulate your data with PandasRetrieve and store your data from RDBMS, NoSQL, and distributed filesystems such as HDFS and HDF5Visualize your data with open source libraries such as matplotlib, bokeh, and plotlyLearn about various machine learning methods such as supervised, unsupervised, probabilistic, and BayesianUnderstand signal processing and time series data analysisGet to grips with graph processing and social network analysisIn Detail

Data analysis techniques generate useful insights from small and large volumes of data. Python, with its strong set of libraries, has become a popular platform to conduct various data analysis and predictive modeling tasks.

With this book, you will learn how to process and manipulate data with Python for complex analysis and modeling. We learn data manipulations such as aggregating, concatenating, appending, cleaning, and handling missing values, with NumPy and Pandas. The book covers how to store and retrieve data from various data sources such as SQL and NoSQL, CSV fies, and HDF5. We learn how to visualize data using visualization libraries, along with advanced topics such as signal processing, time series, textual data analysis, machine learning, and social media analysis.

The book covers a plethora of Python modules, such as matplotlib, statsmodels, scikit-learn, and NLTK. It also covers using Python with external environments such as R, Fortran, C/C++, and Boost libraries.

Style and approach

The book takes a very comprehensive approach to enhance your understanding of data analysis. Sufficient real-world examples and use cases are included in the book to help you grasp the concepts quickly and apply them easily in your day-to-day work. Packed with clear, easy to follow examples, this book will turn you into an ace data analyst in no time.

作者简介

Armando Fandango is Chief Data Scientist at Epic Engineering and Consulting Group, and works on confidential projects related to defense and government agencies. Armando is an accomplished technologist with hands-on capabilities and senior executive-level experience with startups and large companies globally. His work spans diverse industries including FinTech, stock exchanges, banking, bioinformatics, genomics, AdTech, infrastructure, transportation, energy, human resources, and entertainment. Armando has worked for more than ten years in projects involving predictive analytics, data science, machine learning, big data, product engineering, high performance computing, and cloud infrastructures. His research interests spans machine learning, deep learning, and scientific computing.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。