Python Data Analysis: Edition 2

· Packt Publishing Ltd
eBook
330
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Learn how to apply powerful data analysis techniques with popular open source Python modulesAbout This BookFind, manipulate, and analyze your data using the Python 3.5 librariesPerform advanced, high-performance linear algebra and mathematical calculations with clean and efficient Python codeAn easy-to-follow guide with realistic examples that are frequently used in real-world data analysis projects.Who This Book Is For

This book is for programmers, scientists, and engineers who have the knowledge of Python and know the basics of data science. It is for those who wish to learn different data analysis methods using Python 3.5 and its libraries. This book contains all the basic ingredients you need to become an expert data analyst.

What You Will LearnInstall open source Python modules such NumPy, SciPy, Pandas, stasmodels, scikit-learn,theano, keras, and tensorflow on various platformsPrepare and clean your data, and use it for exploratory analysisManipulate your data with PandasRetrieve and store your data from RDBMS, NoSQL, and distributed filesystems such as HDFS and HDF5Visualize your data with open source libraries such as matplotlib, bokeh, and plotlyLearn about various machine learning methods such as supervised, unsupervised, probabilistic, and BayesianUnderstand signal processing and time series data analysisGet to grips with graph processing and social network analysisIn Detail

Data analysis techniques generate useful insights from small and large volumes of data. Python, with its strong set of libraries, has become a popular platform to conduct various data analysis and predictive modeling tasks.

With this book, you will learn how to process and manipulate data with Python for complex analysis and modeling. We learn data manipulations such as aggregating, concatenating, appending, cleaning, and handling missing values, with NumPy and Pandas. The book covers how to store and retrieve data from various data sources such as SQL and NoSQL, CSV fies, and HDF5. We learn how to visualize data using visualization libraries, along with advanced topics such as signal processing, time series, textual data analysis, machine learning, and social media analysis.

The book covers a plethora of Python modules, such as matplotlib, statsmodels, scikit-learn, and NLTK. It also covers using Python with external environments such as R, Fortran, C/C++, and Boost libraries.

Style and approach

The book takes a very comprehensive approach to enhance your understanding of data analysis. Sufficient real-world examples and use cases are included in the book to help you grasp the concepts quickly and apply them easily in your day-to-day work. Packed with clear, easy to follow examples, this book will turn you into an ace data analyst in no time.

저자 정보

Armando Fandango is Chief Data Scientist at Epic Engineering and Consulting Group, and works on confidential projects related to defense and government agencies. Armando is an accomplished technologist with hands-on capabilities and senior executive-level experience with startups and large companies globally. His work spans diverse industries including FinTech, stock exchanges, banking, bioinformatics, genomics, AdTech, infrastructure, transportation, energy, human resources, and entertainment. Armando has worked for more than ten years in projects involving predictive analytics, data science, machine learning, big data, product engineering, high performance computing, and cloud infrastructures. His research interests spans machine learning, deep learning, and scientific computing.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.