Profinite Groups

·
· Springer Science & Business Media
4,0
2 bài đánh giá
Sách điện tử
435
Trang
Điểm xếp hạng và bài đánh giá chưa được xác minh  Tìm hiểu thêm

Giới thiệu về sách điện tử này

The aim of this book is to serve both as an introduction to profinite groups and as a reference for specialists in some areas of the theory. In neither of these two aspects have we tried to be encyclopedic. After some necessary background, we thoroughly develop the basic properties of profinite groups and introduce the main tools of the subject in algebra, topology and homol ogy. Later we concentrate on some topics that we present in detail, including recent developments in those areas. Interest in profinite groups arose first in the study of the Galois groups of infinite Galois extensions of fields. Indeed, profinite groups are precisely Galois groups and many of the applications of profinite groups are related to number theory. Galois groups carry with them a natural topology, the Krull topology. Under this topology they are Hausdorff compact and totally dis connected topological groups; these properties characterize profinite groups. Another important fact about profinite groups is that they are determined by their finite images under continuous homomorphisms: a profinite group is the inverse limit of its finite images. This explains the connection with abstract groups. If G is an infinite abstract group, one is interested in deducing prop erties of G from corresponding properties of its finite homomorphic images.

Xếp hạng và đánh giá

4,0
2 bài đánh giá

Xếp hạng sách điện tử này

Cho chúng tôi biết suy nghĩ của bạn.

Đọc thông tin

Điện thoại thông minh và máy tính bảng
Cài đặt ứng dụng Google Play Sách cho AndroidiPad/iPhone. Ứng dụng sẽ tự động đồng bộ hóa với tài khoản của bạn và cho phép bạn đọc trực tuyến hoặc ngoại tuyến dù cho bạn ở đâu.
Máy tính xách tay và máy tính
Bạn có thể nghe các sách nói đã mua trên Google Play thông qua trình duyệt web trên máy tính.
Thiết bị đọc sách điện tử và các thiết bị khác
Để đọc trên thiết bị e-ink như máy đọc sách điện tử Kobo, bạn sẽ cần tải tệp xuống và chuyển tệp đó sang thiết bị của mình. Hãy làm theo hướng dẫn chi tiết trong Trung tâm trợ giúp để chuyển tệp sang máy đọc sách điện tử được hỗ trợ.