Profinite Groups

·
· Springer Science & Business Media
4,0
2 yorum
E-kitap
435
Sayfa
Puanlar ve yorumlar doğrulanmaz Daha Fazla Bilgi

Bu e-kitap hakkında

The aim of this book is to serve both as an introduction to profinite groups and as a reference for specialists in some areas of the theory. In neither of these two aspects have we tried to be encyclopedic. After some necessary background, we thoroughly develop the basic properties of profinite groups and introduce the main tools of the subject in algebra, topology and homol ogy. Later we concentrate on some topics that we present in detail, including recent developments in those areas. Interest in profinite groups arose first in the study of the Galois groups of infinite Galois extensions of fields. Indeed, profinite groups are precisely Galois groups and many of the applications of profinite groups are related to number theory. Galois groups carry with them a natural topology, the Krull topology. Under this topology they are Hausdorff compact and totally dis connected topological groups; these properties characterize profinite groups. Another important fact about profinite groups is that they are determined by their finite images under continuous homomorphisms: a profinite group is the inverse limit of its finite images. This explains the connection with abstract groups. If G is an infinite abstract group, one is interested in deducing prop erties of G from corresponding properties of its finite homomorphic images.

Kullanıcı puanları ve yorumlar

4,0
2 yorum

Bu e-kitaba puan verin

Düşüncelerinizi bizimle paylaşın.

Okuma bilgileri

Akıllı telefonlar ve tabletler
Android ve iPad/iPhone için Google Play Kitaplar uygulamasını yükleyin. Bu uygulama, hesabınızla otomatik olarak senkronize olur ve nerede olursanız olun çevrimiçi veya çevrimdışı olarak okumanıza olanak sağlar.
Dizüstü bilgisayarlar ve masaüstü bilgisayarlar
Bilgisayarınızın web tarayıcısını kullanarak Google Play'de satın alınan sesli kitapları dinleyebilirsiniz.
e-Okuyucular ve diğer cihazlar
Kobo eReader gibi e-mürekkep cihazlarında okumak için dosyayı indirip cihazınıza aktarmanız gerekir. Dosyaları desteklenen e-kitap okuyuculara aktarmak için lütfen ayrıntılı Yardım Merkezi talimatlarını uygulayın.