Probabilistic Approaches to Recommendations

· ·
· Springer Nature
Libër elektronik
181
Faqe
Vlerësimet dhe komentet nuk janë të verifikuara  Mëso më shumë

Rreth këtij libri elektronik

The importance of accurate recommender systems has been widely recognized by academia and industry, and recommendation is rapidly becoming one of the most successful applications of data mining and machine learning. Understanding and predicting the choices and preferences of users is a challenging task: real-world scenarios involve users behaving in complex situations, where prior beliefs, specific tendencies, and reciprocal influences jointly contribute to determining the preferences of users toward huge amounts of information, services, and products. Probabilistic modeling represents a robust formal mathematical framework to model these assumptions and study their effects in the recommendation process. This book starts with a brief summary of the recommendation problem and its challenges and a review of some widely used techniques Next, we introduce and discuss probabilistic approaches for modeling preference data. We focus our attention on methods based on latent factors, such as mixture models, probabilistic matrix factorization, and topic models, for explicit and implicit preference data. These methods represent a significant advance in the research and technology of recommendation. The resulting models allow us to identify complex patterns in preference data, which can be exploited to predict future purchases effectively. The extreme sparsity of preference data poses serious challenges to the modeling of user preferences, especially in the cases where few observations are available. Bayesian inference techniques elegantly address the need for regularization, and their integration with latent factor modeling helps to boost the performances of the basic techniques. We summarize the strengths and weakness of several approaches by considering two different but related evaluation perspectives, namely, rating prediction and recommendation accuracy. Furthermore, we describe how probabilistic methods based on latent factors enable the exploitation of preference patterns in novel applications beyond rating prediction or recommendation accuracy. We finally discuss the application of probabilistic techniques in two additional scenarios, characterized by the availability of side information besides preference data. In summary, the book categorizes the myriad probabilistic approaches to recommendations and provides guidelines for their adoption in real-world situations.

Rreth autorit

Nicola Barbieri is a post-doc in the WebMining research group at Yahoo! Labs - Barcelona. He graduated with full marks and honor and received his Ph.D. in 2012 at University of Calabria, Italy. Before joining Yahoo in 2012, he was a fellow researcher at ICAR-CNR. His research focuses on the development of novel data mining and machine learning techniques with a wide range of applications in social influence analysis, viral marketing, and community detection. Giuseppe Manco received a Ph.D. degree in computer science from the University of Pisa. He is currently a senior researcher at the Institute of High Performance Computing and Networks (ICAR-CNR) of the National Research Council of Italy and a contract professor at University of Calabria, Italy. He has been contract researcher at the CNUCE Institute in Pisa, Italy. His current research interests include knowledge discovery and data mining, Recommender systems, and Social Network analysis. Ettore Ritacco is a researcher at the Institute of High Performance Computing and Networks (ICAR-CNR) of the National Research Council of Italy. He graduated summa cum laude in Computer Science and received his Ph.D. in the doctoral school in System Engineering and Computer Science (cycle XXIII), 2011, at University of Calabria, Italy. His research focuses on mathematical tools for knowledge discovery, business intelligence and data mining. His current interests are Recommender Systems, Social Network analysis, and mining complex data in hostile environments.

Vlerëso këtë libër elektronik

Na trego se çfarë mendon.

Informacione për leximin

Telefona inteligjentë dhe tabletë
Instalo aplikacionin "Librat e Google Play" për Android dhe iPad/iPhone. Ai sinkronizohet automatikisht me llogarinë tënde dhe të lejon të lexosh online dhe offline kudo që të ndodhesh.
Laptopë dhe kompjuterë
Mund të dëgjosh librat me audio të blerë në Google Play duke përdorur shfletuesin e uebit të kompjuterit.
Lexuesit elektronikë dhe pajisjet e tjera
Për të lexuar në pajisjet me bojë elektronike si p.sh. lexuesit e librave elektronikë Kobo, do të të duhet të shkarkosh një skedar dhe ta transferosh atë te pajisja jote. Ndiq udhëzimet e detajuara në Qendrën e ndihmës për të transferuar skedarët te lexuesit e mbështetur të librave elektronikë.

Më shumë nga Nicola Barbieri

Libra elektronikë të ngjashëm