Prediction, Learning, and Games

·
· Cambridge University Press
3.0
1 isibuyekezo
I-Ebook
4
Amakhasi
Izilinganiso nezibuyekezo aziqinisekisiwe  Funda Kabanzi

Mayelana nale ebook

This important text and reference for researchers and students in machine learning, game theory, statistics and information theory offers a comprehensive treatment of the problem of predicting individual sequences. Unlike standard statistical approaches to forecasting, prediction of individual sequences does not impose any probabilistic assumption on the data-generating mechanism. Yet, prediction algorithms can be constructed that work well for all possible sequences, in the sense that their performance is always nearly as good as the best forecasting strategy in a given reference class. The central theme is the model of prediction using expert advice, a general framework within which many related problems can be cast and discussed. Repeated game playing, adaptive data compression, sequential investment in the stock market, sequential pattern analysis, and several other problems are viewed as instances of the experts' framework and analyzed from a common nonstochastic standpoint that often reveals new and intriguing connections.

Izilinganiso nezibuyekezo

3.0
1 isibuyekezo

Mayelana nomlobi

Nicolò Cesa-Bianchi is Professor of Computer Science at the University of Milan, Italy. His research interests include learning theory, pattern analysis, and worst-case analysis of algorithms. He is the acting editor of The Machine Learning Journal.

Gábor Lugosi has been working on various problems in pattern classification, nonparametric statistics, statistical learning theory, game theory, probability, and information theory. He is co-author of the monographs, A Probabilistic Theory of Pattern Recognition and Combinatorial Methods of Density Estimation. He has been an associate editor of various journals including The IEEE Transactions of Information Theory, Test, ESAIM: Probability and Statistics and Statistics and Decisions.

Nikeza le ebook isilinganiso

Sitshele ukuthi ucabangani.

Ulwazi lokufunda

Amasmathifoni namathebulethi
Faka uhlelo lokusebenza lwe-Google Play Amabhuku lwe-Android ne-iPad/iPhone. Livunyelaniswa ngokuzenzakalela ne-akhawunti yakho liphinde likuvumele ukuthi ufunde uxhunywe ku-inthanethi noma ungaxhunyiwe noma ngabe ukuphi.
Amakhompyutha aphathekayo namakhompyutha
Ungalalela ama-audiobook athengwe ku-Google Play usebenzisa isiphequluli sewebhu sekhompuyutha yakho.
Ama-eReaders namanye amadivayisi
Ukuze ufunde kumadivayisi e-e-ink afana ne-Kobo eReaders, uzodinga ukudawuniloda ifayela futhi ulidlulisele kudivayisi yakho. Landela imiyalelo Yesikhungo Sosizo eningiliziwe ukuze udlulise amafayela kuma-eReader asekelwayo.