Practical Applications of the Independent Neutrosophic Components and of the Neutrosophic Offset Components

· Infinite Study
Электрондук китеп
15
Барактар
Кошсо болот
Рейтинг жана сын-пикирлер текшерилген жок  Кеңири маалымат

Учкай маалымат

The newly introduced theories, proposed as extensions of the fuzzy theory, such as the Neutrosophic, Pythagorean, Spherical, Picture, Cubic theories, and their numerous hybrid forms, are criticized by the authors of [1]. In this paper we respond to their critics with respect to the neutrosophic theories and show that the DST, that they want to replace the A-IFS with, has many flaws.

Their misunderstanding, with respect to the partial and total independence of the neutrosophic components, is that in the framework of the neutrosophic theories we deal with a MultiVariate Truth-Value (truth upon many independent random variables) as in our real-life world, not with a UniVariate Truth-Value (truth upon only one random variable) as they believe.

About the membership degrees outside of the interval [0, 1], which are now in the arXiv and HAL mainstream, it is normal that somebody who over-works (works overtime) to have an over-membership (i.e., membership degree above 1) to be distinguished from those who do not work overtime (whose membership degree is between 0 and 1).

And, similarly, a negative employee (that who does only damages to the company) to have a negative membership (i.e., membership degree below 0) in order to distinguish him from the positive employees (those whose membership degree is above 0). There are elementary practical applications in this paper that allow us to think out of box (in this case the box is the interval [0, 1]).

Бул электрондук китепти баалаңыз

Оюңуз менен бөлүшүп коюңуз.

Окуу маалыматы

Смартфондор жана планшеттер
Android жана iPad/iPhone үчүн Google Play Китептер колдонмосун орнотуңуз. Ал автоматтык түрдө аккаунтуңуз менен шайкештелип, кайда болбоңуз, онлайнда же оффлайнда окуу мүмкүнчүлүгүн берет.
Ноутбуктар жана компьютерлер
Google Play'ден сатылып алынган аудиокитептерди компьютериңиздин веб браузеринен уга аласыз.
eReaders жана башка түзмөктөр
Kobo eReaders сыяктуу электрондук сыя түзмөктөрүнөн окуу үчүн, файлды жүктөп алып, аны түзмөгүңүзгө өткөрүшүңүз керек. Файлдарды колдоого алынган eReaders'ке өткөрүү үчүн Жардам борборунун нускамаларын аткарыңыз.