Practical Applications of the Independent Neutrosophic Components and of the Neutrosophic Offset Components

· Infinite Study
E-boek
15
Bladsye
Geskik
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

The newly introduced theories, proposed as extensions of the fuzzy theory, such as the Neutrosophic, Pythagorean, Spherical, Picture, Cubic theories, and their numerous hybrid forms, are criticized by the authors of [1]. In this paper we respond to their critics with respect to the neutrosophic theories and show that the DST, that they want to replace the A-IFS with, has many flaws.

Their misunderstanding, with respect to the partial and total independence of the neutrosophic components, is that in the framework of the neutrosophic theories we deal with a MultiVariate Truth-Value (truth upon many independent random variables) as in our real-life world, not with a UniVariate Truth-Value (truth upon only one random variable) as they believe.

About the membership degrees outside of the interval [0, 1], which are now in the arXiv and HAL mainstream, it is normal that somebody who over-works (works overtime) to have an over-membership (i.e., membership degree above 1) to be distinguished from those who do not work overtime (whose membership degree is between 0 and 1).

And, similarly, a negative employee (that who does only damages to the company) to have a negative membership (i.e., membership degree below 0) in order to distinguish him from the positive employees (those whose membership degree is above 0). There are elementary practical applications in this paper that allow us to think out of box (in this case the box is the interval [0, 1]).

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.