Polynomial Identities and Asymptotic Methods

·
· Mathematical Surveys and Monographs Bók 122 · American Mathematical Soc.
Rafbók
352
Síður
Einkunnir og umsagnir eru ekki staðfestar  Nánar

Um þessa rafbók

This book gives a state of the art approach to the study of polynomial identities satisfied by a given algebra by combining methods of ring theory, combinatorics, and representation theory of groups with analysis. The idea of applying analytical methods to the theory of polynomial identities appeared in the early 1970s and this approach has become one of the most powerful tools of the theory. A PI-algebra is any algebra satisfying at least one nontrivial polynomial identity.This includes the polynomial rings in one or several variables, the Grassmann algebra, finite-dimensional algebras, and many other algebras occurring naturally in mathematics. The core of the book is the proof that the sequence of co dimensions of any PI-algebra has integral exponential growth - the PI-exponent of the algebra. Later chapters further apply these results to subjects such as a characterization of varieties of algebras having polynomial growth and a classification of varieties that are minimal for a given exponent. Results are extended to graded algebras and algebras with involution. The book concludes with a study of the numerical invariants and their asymptotics in the class of Lie algebras. Even in algebras that are close to being associative, the behavior of the sequences of co dimensions can be wild. The material is suitable for graduate students and research mathematicians interested in polynomial identity algebras.

Gefa þessari rafbók einkunn.

Segðu okkur hvað þér finnst.

Upplýsingar um lestur

Snjallsímar og spjaldtölvur
Settu upp forritið Google Play Books fyrir Android og iPad/iPhone. Það samstillist sjálfkrafa við reikninginn þinn og gerir þér kleift að lesa með eða án nettengingar hvar sem þú ert.
Fartölvur og tölvur
Hægt er að hlusta á hljóðbækur sem keyptar eru í Google Play í vafranum í tölvunni.
Lesbretti og önnur tæki
Til að lesa af lesbrettum eins og Kobo-lesbrettum þarftu að hlaða niður skrá og flytja hana yfir í tækið þitt. Fylgdu nákvæmum leiðbeiningum hjálparmiðstöðvar til að flytja skrár yfir í studd lesbretti.