Periodic Differential Equations: An Introduction to Mathieu, Lamé, and Allied Functions

· International series of monographs in pure and applied mathematics 66-kitob · Elsevier
E-kitob
294
Sahifalar soni
Yaroqli
Reytinglar va sharhlar tasdiqlanmagan  Batafsil

Bu e-kitob haqida

Periodic Differential Equations: An Introduction to Mathieu, Lamé, and Allied Functions covers the fundamental problems and techniques of solution of periodic differential equations. This book is composed of 10 chapters that present important equations and the special functions they generate, ranging from Mathieu's equation to the intractable ellipsoidal wave equation. This book starts with a survey of the main problems related to the formation of periodic differential equations. The subsequent chapters deal with the general theory of Mathieu's equation, Mathieu functions of integral order, and the principles of asymptotic expansions. These topics are followed by discussions of the stable and unstable solutions of Mathieu's general equation; general properties and characteristic exponent of Hill's equation; and the general nature and solutions of the spheroidal wave equation. The concluding chapters explore the polynomials, orthogonality properties, and integral relations of Lamé's equation. These chapters also describe the wave functions and solutions of the ellipsoidal wave equation. This book will prove useful to pure and applied mathematicians and functional analysis.

Bu e-kitobni baholang

Fikringizni bildiring.

Qayerda o‘qiladi

Smartfonlar va planshetlar
Android va iPad/iPhone uchun mo‘ljallangan Google Play Kitoblar ilovasini o‘rnating. U hisobingiz bilan avtomatik tazrda sinxronlanadi va hatto oflayn rejimda ham kitob o‘qish imkonini beradi.
Noutbuklar va kompyuterlar
Google Play orqali sotib olingan audiokitoblarni brauzer yordamida tinglash mumkin.
Kitob o‘qish uchun mo‘ljallangan qurilmalar
Kitoblarni Kobo e-riderlar kabi e-siyoh qurilmalarida oʻqish uchun faylni yuklab olish va qurilmaga koʻchirish kerak. Fayllarni e-riderlarga koʻchirish haqida batafsil axborotni Yordam markazidan olishingiz mumkin.