Numerische Methoden bei Optimierungsaufgaben Band 3: Optimierung bei graphentheoretischen und ganzzahligen Problemen

¡ ¡
¡ Springer-Verlag
ā§Ģ.ā§Ļ
ā§§āϟāĻŋ āϰāĻŋāĻ­āĻŋāω
āχ-āĻŦ⧁āĻ•
216
āĻĒ⧃āĻˇā§āĻ āĻž
āϰ⧇āϟāĻŋāĻ‚ āĻ“ āϰāĻŋāĻ­āĻŋāω āϝāĻžāϚāĻžāχ āĻ•āϰāĻž āĻšā§ŸāύāĻŋ  āφāϰāĻ“ āϜāĻžāύ⧁āύ

āĻāχ āχ-āĻŦ⧁āϕ⧇āϰ āĻŦāĻŋāĻˇā§Ÿā§‡

Der vorliegende Band gibt hauptsächlich Vorträge wieder, die in der Zeit vom 23. bis 27. Februar 1976 auf einem am Mathematischen Forschungsinstitut Oberwolfach abgehaltenen Kolloquium Ãŧber ÂĢOptimierung bei graphentheo retischen und ganzzahligen ProblemenÂģ gehalten wurden. Die Tagung war einem aktuellen und in neuerer Zeit in der Literatur viel behandelten Teilge biet der Optimierung gewidmet. Die graphen theoretischen und ganzzahligen Optimierungsprobleme sind, wie auch aus den 19 Vorträgen hervorging, fÃŧr viele Anwendungen in Wirtschaft und Technik von Bedeutung, geben aber auch Anlass zu interessanten theoretischen Untersuchungen. Auch Ãŧber Fortschritte auf dem Gebiet der numerischen Methoden konnte berichtet werden, vor allem im Zusammenhang mit der Komplexität von Algorithmen. So hoffen die Unterzeichner, dass die Tagung dazu beigetragen hat, den Kontakt zwischen mathematischer Theorie und Anwendungsgebieten wieder etwas stärker zu beleben. Die 42 Teilnehmer aus dem In-und Ausland, darunter eine grÃļssere Gruppe aus den Niederlanden und einige eigens zu dieser Tagung aus Amerika angereiste Kollegen, haben in Vorträgen und Diskussionen viele wertvolle Informationen austauschen kÃļnnen. Der Institutsleitung gebÃŧhrt fÃŧr diese Gelegenheit der wissenschaftlichen Begegnung der Dank aller Teilnehmer. W. WETTERLING L. COLLATZ G. MEINARDUS (Siegen) (Enschede) (Hamburg) Inhaltsverzeichnis R.E. BURKARD - H. HAMACHER - U. ZIMMERMANN: Flussprobleme mit allgemeinen Kosten ........................... 9 L. COLLATZ: Graphen bei Ornamenten und Verzweigungsdiagrammen . . . . . . . . . . 23 . . B. DEJON: Bestimmung von r kÃŧrzesten Wegen in Netzwerken unter Nebenbed- gungen: Verfahren vom Hoffman-Pavley-Typ . . . . . . . . . . . . . . . . . 47 . . . . . R. HALIN:Systeme disjunkter unendlicher Wege in Graphen .................. 55 P.L. HAMMER: Pseudo-Boolean remarks on balanced graphs. . . . . . . . . . . . . . . . . . 69 . . . . .

āϰ⧇āϟāĻŋāĻ‚ āĻ“ āĻĒāĻ°ā§āϝāĻžāϞ⧋āϚāύāĻžāϗ⧁āϞāĻŋ

ā§Ģ.ā§Ļ
ā§§āϟāĻŋ āϰāĻŋāĻ­āĻŋāω

āχ-āĻŦ⧁āϕ⧇ āϰ⧇āϟāĻŋāĻ‚ āĻĻāĻŋāύ

āφāĻĒāύāĻžāϰ āĻŽāϤāĻžāĻŽāϤ āϜāĻžāύāĻžāύāĨ¤

āĻĒāĻ āύ āϤāĻĨā§āϝ

āĻ¸ā§āĻŽāĻžāĻ°ā§āϟāĻĢā§‹āύ āĻāĻŦāĻ‚ āĻŸā§āϝāĻžāĻŦāϞ⧇āϟ
Android āĻāĻŦāĻ‚ iPad/iPhone āĻāϰ āϜāĻ¨ā§āϝ Google Play āĻŦāχ āĻ…ā§āϝāĻžāĻĒ āχāύāĻ¸ā§āϟāϞ āĻ•āϰ⧁āύāĨ¤ āĻāϟāĻŋ āφāĻĒāύāĻžāϰ āĻ…ā§āϝāĻžāĻ•āĻžāωāĻ¨ā§āĻŸā§‡āϰ āϏāĻžāĻĨ⧇ āĻ…āĻŸā§‹āĻŽā§‡āϟāĻŋāĻ• āϏāĻŋāĻ™ā§āĻ• āĻšā§Ÿ āĻ“ āφāĻĒāύāĻŋ āĻ…āύāϞāĻžāχāύ āĻŦāĻž āĻ…āĻĢāϞāĻžāχāύ āϝāĻžāχ āĻĨāĻžāϕ⧁āύ āύāĻž āϕ⧇āύ āφāĻĒāύāĻžāϕ⧇ āĻĒ⧜āϤ⧇ āĻĻā§‡ā§ŸāĨ¤
āĻ˛ā§āϝāĻžāĻĒāϟāĻĒ āĻ“ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ
Google Play āĻĨ⧇āϕ⧇ āϕ⧇āύāĻž āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āĻ• āφāĻĒāύāĻŋ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ⧇āϰ āĻ“ā§Ÿā§‡āĻŦ āĻŦā§āϰāĻžāωāϜāĻžāϰ⧇ āĻļ⧁āύāϤ⧇ āĻĒāĻžāϰ⧇āύāĨ¤
eReader āĻāĻŦāĻ‚ āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āĻĄāĻŋāĻ­āĻžāχāϏ
Kobo eReaders-āĻāϰ āĻŽāϤ⧋ e-ink āĻĄāĻŋāĻ­āĻžāχāϏ⧇ āĻĒāĻĄāĻŧāϤ⧇, āφāĻĒāύāĻžāϕ⧇ āĻāĻ•āϟāĻŋ āĻĢāĻžāχāϞ āĻĄāĻžāωāύāϞ⧋āĻĄ āĻ“ āφāĻĒāύāĻžāϰ āĻĄāĻŋāĻ­āĻžāχāϏ⧇ āĻŸā§āϰāĻžāĻ¨ā§āϏāĻĢāĻžāϰ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤ āĻŦā§āϝāĻŦāĻšāĻžāϰāĻ•āĻžāϰ⧀āϰ āωāĻĻā§āĻĻ⧇āĻļā§āϝ⧇ āϤ⧈āϰāĻŋ āϏāĻšāĻžā§ŸāϤāĻž āϕ⧇āĻ¨ā§āĻĻā§āϰāϤ⧇ āĻĻ⧇āĻ“ā§ŸāĻž āύāĻŋāĻ°ā§āĻĻ⧇āĻļāĻžāĻŦāϞ⧀ āĻ…āύ⧁āϏāϰāĻŖ āĻ•āϰ⧇ āϝ⧇āϏāĻŦ eReader-āĻ āĻĢāĻžāχāϞ āĻĒāĻĄāĻŧāĻž āϝāĻžāĻŦ⧇ āϏ⧇āĻ–āĻžāύ⧇ āĻŸā§āϰāĻžāĻ¨ā§āϏāĻĢāĻžāϰ āĻ•āϰ⧁āύāĨ¤

L. Collatz āĻāϰ āĻĨ⧇āϕ⧇ āφāϰ⧋

āĻāĻ•āχ āϧāϰāύ⧇āϰ āχ-āĻŦ⧁āĻ•