Numerische Mathematik: Ausgabe 7

· Springer-Verlag
ای بک
589
صفحات
درجہ بندیوں اور جائزوں کی تصدیق نہیں کی جاتی ہے  مزید جانیں

اس ای بک کے بارے میں

Gegenstand und Ziel Numerische Mathematik befasst sich damit, für mathematisch formulierte Probleme einen rechnerischen Lösungsweg zu finden. (H. Rutishauser) Da die meisten Probleme der Natur-, Ingenieur- und Wirtschaftswissenschaften vor ihrer rechnerischen Lösung mathematisch modelliert werden, entwickelt die numerische Mathe matik für eine Vielzahl von Problemstellungen rechnerische Lösungswege, so genannte Al gorithmen, siehe Definition 1.1. Sie muss sich daher neben der Mathematik auch mit der Auswahl von Hard-und Software beschäftigen. Damit ist die numerische Mathematik Teil des Gebietes wissenschaftliches Rechnen (Scientific Computing), das Elemente der Mathe matik, der Informatik und der Ingenieurwissenschaften umfasst. immer leistungsfähigerer Rechner hat dazu geführt, dass heute Proble Die Entwicklung me aus Luft-und Raumfahrt, Physik, Meteorologie, Biologie und vielen anderen Gebieten rechnerisch gelöst werden können, deren Lösung lange als unmöglich galt. Dabei gehen die Entwicklung von Algorithmen und Rechnern Hand in Hand. Ziel der Ausbildung in nume rischer Mathematik ist deshalb auch die Erziehung zu algorithmischem Denken, d.h. zur Kreativität beim Entwurf von Rechnerlösungen für Anwendungsprobleme. Vom Problem zur Lösung Folgende Schritte führen von einem Anwendungsproblem zu seiner numerischen Lösung: Modellierung: Ein Anwendungsproblem muss zunächst in die Form eines mathematischen Modells gegossen werden. Dies geschieht meistens auf der Grundlage idealisierter Annah men. Es findet also schon die erste Annäherung statt, damit eine Lösung - exakt analytisch oder angenähert numerisch - möglich wird. Realisierung: Für das mathematische Modell muss eine Lösungsmethode gefunden werden. Ist diese numerisch, so kann inder Regel zwischen mehreren Verfahren gewählt werden.

مصنف کے بارے میں

Prof. Dr. Hans Rudolf Schwarz, Universität Zürich
Prof. Dr. Norbert Köckler, Universität Paderborn

اس ای بک کی درجہ بندی کریں

ہمیں اپنی رائے سے نوازیں۔

پڑھنے کی معلومات

اسمارٹ فونز اور ٹیب لیٹس
Android اور iPad/iPhone.کیلئے Google Play کتابیں ایپ انسٹال کریں۔ یہ خودکار طور پر آپ کے اکاؤنٹ سے سینک ہو جاتی ہے اور آپ جہاں کہیں بھی ہوں آپ کو آن لائن یا آف لائن پڑھنے دیتی ہے۔
لیپ ٹاپس اور کمپیوٹرز
آپ اپنے کمپیوٹر کے ویب براؤزر کا استعمال کر کے Google Play پر خریدی گئی آڈیو بکس سن سکتے ہیں۔
ای ریڈرز اور دیگر آلات
Kobo ای ریڈرز جیسے ای-انک آلات پر پڑھنے کے لیے، آپ کو ایک فائل ڈاؤن لوڈ کرنے اور اسے اپنے آلے پر منتقل کرنے کی ضرورت ہوگی۔ فائلز تعاون یافتہ ای ریڈرز کو منتقل کرنے کے لیے تفصیلی ہیلپ سینٹر کی ہدایات کی پیروی کریں۔