Numerische Mathematik: Ausgabe 7

· Springer-Verlag
Carte electronică
589
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Gegenstand und Ziel Numerische Mathematik befasst sich damit, für mathematisch formulierte Probleme einen rechnerischen Lösungsweg zu finden. (H. Rutishauser) Da die meisten Probleme der Natur-, Ingenieur- und Wirtschaftswissenschaften vor ihrer rechnerischen Lösung mathematisch modelliert werden, entwickelt die numerische Mathe matik für eine Vielzahl von Problemstellungen rechnerische Lösungswege, so genannte Al gorithmen, siehe Definition 1.1. Sie muss sich daher neben der Mathematik auch mit der Auswahl von Hard-und Software beschäftigen. Damit ist die numerische Mathematik Teil des Gebietes wissenschaftliches Rechnen (Scientific Computing), das Elemente der Mathe matik, der Informatik und der Ingenieurwissenschaften umfasst. immer leistungsfähigerer Rechner hat dazu geführt, dass heute Proble Die Entwicklung me aus Luft-und Raumfahrt, Physik, Meteorologie, Biologie und vielen anderen Gebieten rechnerisch gelöst werden können, deren Lösung lange als unmöglich galt. Dabei gehen die Entwicklung von Algorithmen und Rechnern Hand in Hand. Ziel der Ausbildung in nume rischer Mathematik ist deshalb auch die Erziehung zu algorithmischem Denken, d.h. zur Kreativität beim Entwurf von Rechnerlösungen für Anwendungsprobleme. Vom Problem zur Lösung Folgende Schritte führen von einem Anwendungsproblem zu seiner numerischen Lösung: Modellierung: Ein Anwendungsproblem muss zunächst in die Form eines mathematischen Modells gegossen werden. Dies geschieht meistens auf der Grundlage idealisierter Annah men. Es findet also schon die erste Annäherung statt, damit eine Lösung - exakt analytisch oder angenähert numerisch - möglich wird. Realisierung: Für das mathematische Modell muss eine Lösungsmethode gefunden werden. Ist diese numerisch, so kann inder Regel zwischen mehreren Verfahren gewählt werden.

Despre autor

Prof. Dr. Hans Rudolf Schwarz, Universität Zürich
Prof. Dr. Norbert Köckler, Universität Paderborn

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.