Numerische Mathematik: Ausgabe 7

· Springer-Verlag
E-boek
589
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

Gegenstand und Ziel Numerische Mathematik befasst sich damit, für mathematisch formulierte Probleme einen rechnerischen Lösungsweg zu finden. (H. Rutishauser) Da die meisten Probleme der Natur-, Ingenieur- und Wirtschaftswissenschaften vor ihrer rechnerischen Lösung mathematisch modelliert werden, entwickelt die numerische Mathe matik für eine Vielzahl von Problemstellungen rechnerische Lösungswege, so genannte Al gorithmen, siehe Definition 1.1. Sie muss sich daher neben der Mathematik auch mit der Auswahl von Hard-und Software beschäftigen. Damit ist die numerische Mathematik Teil des Gebietes wissenschaftliches Rechnen (Scientific Computing), das Elemente der Mathe matik, der Informatik und der Ingenieurwissenschaften umfasst. immer leistungsfähigerer Rechner hat dazu geführt, dass heute Proble Die Entwicklung me aus Luft-und Raumfahrt, Physik, Meteorologie, Biologie und vielen anderen Gebieten rechnerisch gelöst werden können, deren Lösung lange als unmöglich galt. Dabei gehen die Entwicklung von Algorithmen und Rechnern Hand in Hand. Ziel der Ausbildung in nume rischer Mathematik ist deshalb auch die Erziehung zu algorithmischem Denken, d.h. zur Kreativität beim Entwurf von Rechnerlösungen für Anwendungsprobleme. Vom Problem zur Lösung Folgende Schritte führen von einem Anwendungsproblem zu seiner numerischen Lösung: Modellierung: Ein Anwendungsproblem muss zunächst in die Form eines mathematischen Modells gegossen werden. Dies geschieht meistens auf der Grundlage idealisierter Annah men. Es findet also schon die erste Annäherung statt, damit eine Lösung - exakt analytisch oder angenähert numerisch - möglich wird. Realisierung: Für das mathematische Modell muss eine Lösungsmethode gefunden werden. Ist diese numerisch, so kann inder Regel zwischen mehreren Verfahren gewählt werden.

Over de auteur

Prof. Dr. Hans Rudolf Schwarz, Universität Zürich
Prof. Dr. Norbert Köckler, Universität Paderborn

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.