Number Theory And Its Applications

· ·
· World Scientific Publishing Company
Carte electronică
208
Pagini
Eligibilă
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

This book emphasizes the role of symmetry and presents as many viewpoints as possible of an important phenomenon — the functional equation of the associated zeta-function. It starts from the basics before warping into the space of new interest; from the ground state to the excited state. For example, the celebrated Gauss quadratic reciprocity law is proved in four independent ways, which are in some way or other dependent on the functional equation. The proofs rest on finite fields, representation theory of nilpotent groups, reciprocity law for the Dedekind sums, and the translation formula for the theta-series, respectively. Likewise, for example, the Euler function is treated in several different places.One of the important principles of learning is to work with the material many times. This book presents many worked-out examples and exercises to enhance the reader's comprehension on the topics covered in an in-depth manner. This is done in a different setting each time such that the reader will always be challenged. For the keen reader, even browsing the text alone, without solving the exercises, will yield some knowledge and enjoyment.

Despre autor

Fuhuo Li (Sanmenxia SuDa Transportation Energy Saving Technology Co., Ltd, China);Nianliang Wang (Shangluo University, China);Shigeru Kanemitsu (Kinki University, Japan)

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.