Normalization Techniques in Deep Learning

· Springer Nature
ኢ-መጽሐፍ
110
ገጾች
የተሰጡት ደረጃዎች እና ግምገማዎች የተረጋገጡ አይደሉም  የበለጠ ለመረዳት

ስለዚህ ኢ-መጽሐፍ

​This book presents and surveys normalization techniques with a deep analysis in training deep neural networks. In addition, the author provides technical details in designing new normalization methods and network architectures tailored to specific tasks. Normalization methods can improve the training stability, optimization efficiency, and generalization ability of deep neural networks (DNNs) and have become basic components in most state-of-the-art DNN architectures. The author provides guidelines for elaborating, understanding, and applying normalization methods. This book is ideal for readers working on the development of novel deep learning algorithms and/or their applications to solve practical problems in computer vision and machine learning tasks. The book also serves as a resource researchers, engineers, and students who are new to the field and need to understand and train DNNs.

ስለደራሲው

Lei Huang, Ph.D., is an Associate Professor at Beihang University. His current research interests include normalization techniques involving methods, theories, and applications in training deep neural networks (DNNs). He also has wide interests in representation and optimization of deep learning theory and computer vision tasks. Dr. Huang serves as a reviewer for top-tier conferences and journals in machine learning and computer vision.

ለዚህ ኢ-መጽሐፍ ደረጃ ይስጡ

ምን እንደሚያስቡ ይንገሩን።

የንባብ መረጃ

ዘመናዊ ስልኮች እና ጡባዊዎች
የGoogle Play መጽሐፍት መተግበሪያውንAndroid እና iPad/iPhone ያውርዱ። ከእርስዎ መለያ ጋር በራስሰር ይመሳሰላል እና ባሉበት የትም ቦታ በመስመር ላይ እና ከመስመር ውጭ እንዲያነቡ ያስችልዎታል።
ላፕቶፖች እና ኮምፒውተሮች
የኮምፒውተርዎን ድር አሳሽ ተጠቅመው በGoogle Play ላይ የተገዙ ኦዲዮ መጽሐፍትን ማዳመጥ ይችላሉ።
ኢሪደሮች እና ሌሎች መሳሪያዎች
እንደ Kobo ኢ-አንባቢዎች ባሉ ኢ-ቀለም መሣሪያዎች ላይ ለማንበብ ፋይል አውርደው ወደ መሣሪያዎ ማስተላለፍ ይኖርብዎታል። ፋይሎቹን ወደሚደገፉ ኢ-አንባቢዎች ለማስተላለፍ ዝርዝር የእገዛ ማዕከል መመሪያዎቹን ይከተሉ።