Nichtlineare Dimensionsreduzierung: Fortgeschrittene Techniken zur Verbesserung der Datendarstellung in Robotersystemen

· Robotikwissenschaft [German] Книга 42 · One Billion Knowledgeable
Електронна книга
320
Сторінки
Можна додати
Google не перевіряє оцінки й відгуки. Докладніше.

Про цю електронну книгу

1: Nichtlineare Dimensionsreduktion: Erkunden Sie grundlegende Konzepte und die Bedeutung der Reduzierung hochdimensionaler Daten für eine einfachere Analyse.

2: Lineare Abbildung: Einführung in die Grundlagen der linearen Abbildung und ihre Rolle bei der Reduzierung der Datendimensionalität im maschinellen Lernen.


3: Support Vector Machine: Erfahren Sie, wie Support Vector Machines die Dimensionsreduktion bei Klassifizierungsaufgaben und Mustererkennung anwenden.


4: Hauptkomponentenanalyse: Tauchen Sie ein in die PCA-Technik zur Umwandlung von Daten in einen Satz linear unkorrelierter Variablen.


5: Isometrie: Untersuchen Sie, wie isometrische Techniken Abstände zwischen Punkten bewahren und gleichzeitig die Datendimensionen reduzieren.


6: Dimensionsreduktion: Verstehen Sie den breiteren Umfang der Dimensionsreduktion und ihre Anwendungen in verschiedenen Bereichen.


7: Semidefinite Einbettung: Studieren Sie semidefinite Programmierung und ihre Verbindung zu Methoden der Dimensionsreduktion.


8: Kernelmethode: Entdecken Sie die Leistungsfähigkeit von Kernelmethoden beim Umgang mit nichtlinearen Beziehungen bei der Datenreduktion.


9: Kernel-Hauptkomponentenanalyse: Erkunden Sie die Fähigkeit von KPCA, eine Dimensionsreduktion in einem hochdimensionalen Merkmalsraum durchzuführen.


10: Numerische Fortsetzung: Erfahren Sie, wie numerische Fortsetzungstechniken beim Verständnis hochdimensionaler Systeme helfen.


11: Spektrales Clustering: Verstehen Sie, wie spektrales Clustering Dimensionsreduktion nutzt, um ähnliche Datenpunkte zu gruppieren.


12: Isomap: Ein Blick auf Isomap, eine Technik, die mehrdimensionale Skalierung mit geodätischen Distanzen zur Dimensionsreduktion kombiniert.


13: Johnson-Lindenstrauss-Lemma: Tauchen Sie ein in die Mathematik des Johnson-Lindenstrauss-Lemmas, das sicherstellt, dass die Dimensionsreduktion geometrische Eigenschaften beibehält.


14: Lineares nichtlineares Poisson-Kaskadenmodell: Untersuchen Sie, wie dieses Modell lineare und nichtlineare Methoden in die Dimensionsreduktion integriert.


15: Mannigfaltigkeitsausrichtung: Erfahren Sie mehr über Mannigfaltigkeitsausrichtung und ihre Bedeutung bei der Ausrichtung von Daten aus verschiedenen Bereichen bei der Dimensionsreduktion.


16: Diffusionskarte: Verstehen Sie, wie Diffusionskarten den Diffusionsprozess zur Dimensionsreduzierung in komplexen Datensätzen verwenden.


17: Tdistributed Stochastic Neighbor Embedding: Erkunden Sie die Fähigkeit von tSNE, die Dimensionalität zu reduzieren und gleichzeitig lokale Strukturen in Daten beizubehalten.


18: Kernel-Embedding von Verteilungen: Untersuchen Sie, wie Kernel-Embedding eine Dimensionsreduzierung bei Verteilungen und nicht nur bei Datensätzen ermöglicht.


19: Zufallsprojektion: Ein praktischer Ansatz zur Dimensionsreduzierung, der auf Zufallsprojektionen für schnelle Berechnungen basiert.


20: Mannigfaltigkeitsregularisierung: Erfahren Sie mehr über Mannigfaltigkeitsregularisierungstechniken und ihre Auswirkungen auf das Lernen aus hochdimensionalen Daten.


21: Empirische dynamische Modellierung: Entdecken Sie, wie empirische dynamische Modellierung die Dimensionsreduzierung durch Zeitreihendatenanalyse unterstützt.

Оцініть цю електронну книгу

Повідомте нас про свої враження.

Як читати

Смартфони та планшети
Установіть додаток Google Play Книги для Android і iPad або iPhone. Він автоматично синхронізується з вашим обліковим записом і дає змогу читати книги в режимах онлайн і офлайн, де б ви не були.
Портативні та настільні комп’ютери
Ви можете слухати аудіокниги, куплені в Google Play, у веб-переглядачі на комп’ютері.
eReader та інші пристрої
Щоб користуватися пристроями для читання електронних книг із технологією E-ink, наприклад Kobo, вам знадобиться завантажити файл і перенести його на відповідний пристрій. Докладні вказівки з перенесення файлів на підтримувані пристрої можна знайти в Довідковому центрі.

Читайте серію далі

Ще від автора Fouad Sabry

Схожі електронні книги