Nichtlineare Dimensionsreduzierung: Fortgeschrittene Techniken zur Verbesserung der Datendarstellung in Robotersystemen

· Robotikwissenschaft [German] Buku 42 · One Billion Knowledgeable
e-Buku
320
Halaman
Layak
Rating dan ulasan tidak disahkan  Ketahui Lebih Lanjut

Perihal e-buku ini

1: Nichtlineare Dimensionsreduktion: Erkunden Sie grundlegende Konzepte und die Bedeutung der Reduzierung hochdimensionaler Daten für eine einfachere Analyse.

2: Lineare Abbildung: Einführung in die Grundlagen der linearen Abbildung und ihre Rolle bei der Reduzierung der Datendimensionalität im maschinellen Lernen.


3: Support Vector Machine: Erfahren Sie, wie Support Vector Machines die Dimensionsreduktion bei Klassifizierungsaufgaben und Mustererkennung anwenden.


4: Hauptkomponentenanalyse: Tauchen Sie ein in die PCA-Technik zur Umwandlung von Daten in einen Satz linear unkorrelierter Variablen.


5: Isometrie: Untersuchen Sie, wie isometrische Techniken Abstände zwischen Punkten bewahren und gleichzeitig die Datendimensionen reduzieren.


6: Dimensionsreduktion: Verstehen Sie den breiteren Umfang der Dimensionsreduktion und ihre Anwendungen in verschiedenen Bereichen.


7: Semidefinite Einbettung: Studieren Sie semidefinite Programmierung und ihre Verbindung zu Methoden der Dimensionsreduktion.


8: Kernelmethode: Entdecken Sie die Leistungsfähigkeit von Kernelmethoden beim Umgang mit nichtlinearen Beziehungen bei der Datenreduktion.


9: Kernel-Hauptkomponentenanalyse: Erkunden Sie die Fähigkeit von KPCA, eine Dimensionsreduktion in einem hochdimensionalen Merkmalsraum durchzuführen.


10: Numerische Fortsetzung: Erfahren Sie, wie numerische Fortsetzungstechniken beim Verständnis hochdimensionaler Systeme helfen.


11: Spektrales Clustering: Verstehen Sie, wie spektrales Clustering Dimensionsreduktion nutzt, um ähnliche Datenpunkte zu gruppieren.


12: Isomap: Ein Blick auf Isomap, eine Technik, die mehrdimensionale Skalierung mit geodätischen Distanzen zur Dimensionsreduktion kombiniert.


13: Johnson-Lindenstrauss-Lemma: Tauchen Sie ein in die Mathematik des Johnson-Lindenstrauss-Lemmas, das sicherstellt, dass die Dimensionsreduktion geometrische Eigenschaften beibehält.


14: Lineares nichtlineares Poisson-Kaskadenmodell: Untersuchen Sie, wie dieses Modell lineare und nichtlineare Methoden in die Dimensionsreduktion integriert.


15: Mannigfaltigkeitsausrichtung: Erfahren Sie mehr über Mannigfaltigkeitsausrichtung und ihre Bedeutung bei der Ausrichtung von Daten aus verschiedenen Bereichen bei der Dimensionsreduktion.


16: Diffusionskarte: Verstehen Sie, wie Diffusionskarten den Diffusionsprozess zur Dimensionsreduzierung in komplexen Datensätzen verwenden.


17: Tdistributed Stochastic Neighbor Embedding: Erkunden Sie die Fähigkeit von tSNE, die Dimensionalität zu reduzieren und gleichzeitig lokale Strukturen in Daten beizubehalten.


18: Kernel-Embedding von Verteilungen: Untersuchen Sie, wie Kernel-Embedding eine Dimensionsreduzierung bei Verteilungen und nicht nur bei Datensätzen ermöglicht.


19: Zufallsprojektion: Ein praktischer Ansatz zur Dimensionsreduzierung, der auf Zufallsprojektionen für schnelle Berechnungen basiert.


20: Mannigfaltigkeitsregularisierung: Erfahren Sie mehr über Mannigfaltigkeitsregularisierungstechniken und ihre Auswirkungen auf das Lernen aus hochdimensionalen Daten.


21: Empirische dynamische Modellierung: Entdecken Sie, wie empirische dynamische Modellierung die Dimensionsreduzierung durch Zeitreihendatenanalyse unterstützt.

Berikan rating untuk e-Buku ini

Beritahu kami pendapat anda.

Maklumat pembacaan

Telefon pintar dan tablet
Pasang apl Google Play Books untuk Android dan iPad/iPhone. Apl ini menyegerak secara automatik dengan akaun anda dan membenarkan anda membaca di dalam atau luar talian, walau di mana jua anda berada.
Komputer riba dan komputer
Anda boleh mendengar buku audio yang dibeli di Google Play menggunakan penyemak imbas web komputer anda.
eReader dan peranti lain
Untuk membaca pada peranti e-dakwat seperti Kobo eReaders, anda perlu memuat turun fail dan memindahkan fail itu ke peranti anda. Sila ikut arahan Pusat Bantuan yang terperinci untuk memindahkan fail ke e-Pembaca yang disokong.

Teruskan siri ini

Lagi oleh Fouad Sabry

E-buku serupa