Nichtlineare Dimensionsreduzierung: Fortgeschrittene Techniken zur Verbesserung der Datendarstellung in Robotersystemen

· Robotikwissenschaft [German] សៀវភៅទី 42 · One Billion Knowledgeable
សៀវភៅ​អេឡិចត្រូនិច
320
ទំព័រ
មានសិទ្ធិ
ការវាយតម្លៃ និងមតិវាយតម្លៃមិនត្រូវបានផ្ទៀងផ្ទាត់ទេ ស្វែងយល់បន្ថែម

អំពីសៀវភៅ​អេឡិចត្រូនិកនេះ

1: Nichtlineare Dimensionsreduktion: Erkunden Sie grundlegende Konzepte und die Bedeutung der Reduzierung hochdimensionaler Daten für eine einfachere Analyse.

2: Lineare Abbildung: Einführung in die Grundlagen der linearen Abbildung und ihre Rolle bei der Reduzierung der Datendimensionalität im maschinellen Lernen.


3: Support Vector Machine: Erfahren Sie, wie Support Vector Machines die Dimensionsreduktion bei Klassifizierungsaufgaben und Mustererkennung anwenden.


4: Hauptkomponentenanalyse: Tauchen Sie ein in die PCA-Technik zur Umwandlung von Daten in einen Satz linear unkorrelierter Variablen.


5: Isometrie: Untersuchen Sie, wie isometrische Techniken Abstände zwischen Punkten bewahren und gleichzeitig die Datendimensionen reduzieren.


6: Dimensionsreduktion: Verstehen Sie den breiteren Umfang der Dimensionsreduktion und ihre Anwendungen in verschiedenen Bereichen.


7: Semidefinite Einbettung: Studieren Sie semidefinite Programmierung und ihre Verbindung zu Methoden der Dimensionsreduktion.


8: Kernelmethode: Entdecken Sie die Leistungsfähigkeit von Kernelmethoden beim Umgang mit nichtlinearen Beziehungen bei der Datenreduktion.


9: Kernel-Hauptkomponentenanalyse: Erkunden Sie die Fähigkeit von KPCA, eine Dimensionsreduktion in einem hochdimensionalen Merkmalsraum durchzuführen.


10: Numerische Fortsetzung: Erfahren Sie, wie numerische Fortsetzungstechniken beim Verständnis hochdimensionaler Systeme helfen.


11: Spektrales Clustering: Verstehen Sie, wie spektrales Clustering Dimensionsreduktion nutzt, um ähnliche Datenpunkte zu gruppieren.


12: Isomap: Ein Blick auf Isomap, eine Technik, die mehrdimensionale Skalierung mit geodätischen Distanzen zur Dimensionsreduktion kombiniert.


13: Johnson-Lindenstrauss-Lemma: Tauchen Sie ein in die Mathematik des Johnson-Lindenstrauss-Lemmas, das sicherstellt, dass die Dimensionsreduktion geometrische Eigenschaften beibehält.


14: Lineares nichtlineares Poisson-Kaskadenmodell: Untersuchen Sie, wie dieses Modell lineare und nichtlineare Methoden in die Dimensionsreduktion integriert.


15: Mannigfaltigkeitsausrichtung: Erfahren Sie mehr über Mannigfaltigkeitsausrichtung und ihre Bedeutung bei der Ausrichtung von Daten aus verschiedenen Bereichen bei der Dimensionsreduktion.


16: Diffusionskarte: Verstehen Sie, wie Diffusionskarten den Diffusionsprozess zur Dimensionsreduzierung in komplexen Datensätzen verwenden.


17: Tdistributed Stochastic Neighbor Embedding: Erkunden Sie die Fähigkeit von tSNE, die Dimensionalität zu reduzieren und gleichzeitig lokale Strukturen in Daten beizubehalten.


18: Kernel-Embedding von Verteilungen: Untersuchen Sie, wie Kernel-Embedding eine Dimensionsreduzierung bei Verteilungen und nicht nur bei Datensätzen ermöglicht.


19: Zufallsprojektion: Ein praktischer Ansatz zur Dimensionsreduzierung, der auf Zufallsprojektionen für schnelle Berechnungen basiert.


20: Mannigfaltigkeitsregularisierung: Erfahren Sie mehr über Mannigfaltigkeitsregularisierungstechniken und ihre Auswirkungen auf das Lernen aus hochdimensionalen Daten.


21: Empirische dynamische Modellierung: Entdecken Sie, wie empirische dynamische Modellierung die Dimensionsreduzierung durch Zeitreihendatenanalyse unterstützt.

វាយតម្លៃសៀវភៅ​អេឡិចត្រូនិកនេះ

ប្រាប់យើងអំពីការយល់ឃើញរបស់អ្នក។

អាន​ព័ត៌មាន

ទូរសព្ទឆ្លាតវៃ និង​ថេប្លេត
ដំឡើងកម្មវិធី Google Play Books សម្រាប់ Android និង iPad/iPhone ។ វា​ធ្វើសមកាលកម្ម​ដោយស្វ័យប្រវត្តិជាមួយ​គណនី​របស់អ្នក​ និង​អនុញ្ញាតឱ្យ​អ្នកអានពេល​មានអ៊ីនធឺណិត ឬគ្មាន​អ៊ីនធឺណិត​នៅគ្រប់ទីកន្លែង។
កុំព្យូទ័រ​យួរដៃ និងកុំព្យូទ័រ
អ្នកអាចស្ដាប់សៀវភៅជាសំឡេងដែលបានទិញនៅក្នុង Google Play ដោយប្រើកម្មវិធីរុករកតាមអ៊ីនធឺណិតក្នុងកុំព្យូទ័ររបស់អ្នក។
eReaders និង​ឧបករណ៍​ផ្សេង​ទៀត
ដើម្បីអាននៅលើ​ឧបករណ៍ e-ink ដូចជា​ឧបករណ៍អាន​សៀវភៅអេឡិចត្រូនិក Kobo អ្នកនឹងត្រូវ​ទាញយក​ឯកសារ ហើយ​ផ្ទេរវាទៅ​ឧបករណ៍​របស់អ្នក។ សូមអនុវត្តតាម​ការណែនាំលម្អិតរបស់មជ្ឈមណ្ឌលជំនួយ ដើម្បីផ្ទេរឯកសារ​ទៅឧបករណ៍អានសៀវភៅ​អេឡិចត្រូនិកដែលស្គាល់។

បន្តស៊េរី

ច្រើនទៀតដោយ Fouad Sabry

សៀវភៅ​អេឡិចត្រូនិក​ស្រដៀងគ្នា