Minimax Under Transportation Constrains

·
· Applied Optimization Bók 27 · Springer Science & Business Media
Rafbók
310
Síður
Einkunnir og umsagnir eru ekki staðfestar  Nánar

Um þessa rafbók

Transportation problems belong to the domains mathematical program ming and operations research. Transportation models are widely applied in various fields. Numerous concrete problems (for example, assignment and distribution problems, maximum-flow problem, etc. ) are formulated as trans portation problems. Some efficient methods have been developed for solving transportation problems of various types. This monograph is devoted to transportation problems with minimax cri teria. The classical (linear) transportation problem was posed several decades ago. In this problem, supply and demand points are given, and it is required to minimize the transportation cost. This statement paved the way for numerous extensions and generalizations. In contrast to the original statement of the problem, we consider a min imax rather than a minimum criterion. In particular, a matrix with the minimal largest element is sought in the class of nonnegative matrices with given sums of row and column elements. In this case, the idea behind the minimax criterion can be interpreted as follows. Suppose that the shipment time from a supply point to a demand point is proportional to the amount to be shipped. Then, the minimax is the minimal time required to transport the total amount. It is a common situation that the decision maker does not know the tariff coefficients. In other situations, they do not have any meaning at all, and neither do nonlinear tariff objective functions. In such cases, the minimax interpretation leads to an effective solution.

Gefa þessari rafbók einkunn.

Segðu okkur hvað þér finnst.

Upplýsingar um lestur

Snjallsímar og spjaldtölvur
Settu upp forritið Google Play Books fyrir Android og iPad/iPhone. Það samstillist sjálfkrafa við reikninginn þinn og gerir þér kleift að lesa með eða án nettengingar hvar sem þú ert.
Fartölvur og tölvur
Hægt er að hlusta á hljóðbækur sem keyptar eru í Google Play í vafranum í tölvunni.
Lesbretti og önnur tæki
Til að lesa af lesbrettum eins og Kobo-lesbrettum þarftu að hlaða niður skrá og flytja hana yfir í tækið þitt. Fylgdu nákvæmum leiðbeiningum hjálparmiðstöðvar til að flytja skrár yfir í studd lesbretti.