Microfluidic Devices for Biomedical Applications

·
· Elsevier
5.0
리뷰 1개
eBook
676
페이지
적용 가능
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Microfluidics or lab-on-a-chip (LOC) is an important technology suitable for numerous applications from drug delivery to tissue engineering. Microfluidic devices for biomedical applications discusses the fundamentals of microfluidics and explores in detail a wide range of medical applications.The first part of the book reviews the fundamentals of microfluidic technologies for biomedical applications with chapters focussing on the materials and methods for microfabrication, microfluidic actuation mechanisms and digital microfluidic technologies. Chapters in part two examine applications in drug discovery and controlled-delivery including micro needles. Part three considers applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds and stem cell engineering. The final part of the book covers the applications of microfluidic devices in diagnostic sensing, including genetic analysis, low-cost bioassays, viral detection, and radio chemical synthesis.Microfluidic devices for biomedical applications is an essential reference for medical device manufacturers, scientists and researchers concerned with microfluidics in the field of biomedical applications and life-science industries. - Discusses the fundamentals of microfluidics or lab-on-a-chip (LOC) and explores in detail a wide range of medical applications - Considers materials and methods for microfabrication, microfluidic actuation mechanisms and digital microfluidic technologies - Considers applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds and stem cell engineering

평점 및 리뷰

5.0
리뷰 1개

저자 정보

XiuJun (James) Li, Ph.D., is an Associate Professor with early tenure in the Department of Chemistry and Biochemistry, Biomedical Engineering, and Border Biomedical Research Center at the University of Texas at El Paso (UTEP), USA. After he obtained his Ph.D. degree in microfluidic lab-on-a-chip bioanalysis from Simon Fraser University (SFU) in Canada in 2008, he pursued his postdoctoral research with Prof. Richard Mathies at University of California Berkeley and Prof. George Whitesides at Harvard University, while holding a Postdoctoral Fellowship from Natural Sciences and Engineering Research Council (NSERC) of Canada. He has gained extensive experience in bioanalysis using microfluidic systems, such as single-cell analysis, genetic analysis, low-cost diagnosis, pathogen detection, 3D cell culture, and so on. Dr. Li’s current research interest is centered on the development of innovative microfluidic lab-on-a-chip and nanotechnology for bioanalysis, biomaterial, biomedical engineering, and environmental applications, including but not limited to low-cost diagnosis, nano-biosensing, tissue engineering, and single-cell analysis. He has coauthored about 100 publications in high-impact journals (such as Adv. Drug Deliv. Rev, Appl. Catal. B-Environ, Anal. Chem., Lab Chip, Biosens. Bioelectron.) and 22 patents, including two books from Elsevier on microfluidic devices for biomedical applications. He is an Advisory Board member of Lab on a Chip and Analyst, the Founder of microBioChip Diagnostics LLC, and an editor of 6 journals including Scientific Reports from the Nature publishing group, Micromachines, etc. He is the recipient of the “Bioanalysis New Investigator Award in 2014, UT STARS Award in 2012, NSERC Postdoctoral Fellow Award in 2009, and so on. For more information, please visit http://li.utep.edu.

Yu Zhou, PhD, is a Research Scientist in the Department of Research and Development at ABS Global Inc., USA. Dr Zhou received his Ph.D. degree in mechanical engineering from University of Illinois at Chicago in 2010. After graduation, he joined ABS Global, the world-leading genetics provider company as a key researcher and has been working on the development of a high-throughput microfluidic cytometry for biological cell detection and manipulation. He obtained extensive experience in design and fabrication of silicon-based microsystems and disposal plastic microfluidic chips, precision fluid delivery, and microfluidics-based single cell separation and analysis. He is a member of ASME and serves on the advisory editorial board for several technical journals including Microsystem Technologies, and Journal of Mechanical Engineering Research (Canada) since 2011.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.