Matrix Methods: An Introduction

· Academic Press
eBook
300
Pages
Eligible
Ratings and reviews aren’t verified  Learn more

About this eBook

Matrix Methods: An Introduction is a nine-chapter text that emphasizes the methodological aspects of mathematical matrices. This book is intended for an introductory course in matrices similar to those given to sophomore and junior engineering students at Fairleigh Dickinson University. The first five chapters deal with the elementary aspects of matrices, including their definition, determinants, method of inversion, simultaneous linear equations, eigenvalues, and eigenvectors. The remaining chapters explore the materials of fundamental importance to both engineers and scientists. These chapters discuss the principles of matrix calculus, linear differential equations, Jordan canonical forms, and special matrices. A set of exercises is provided at the end of each section, which is basically routine in nature and serves primarily to enhance the reader's ability to use the methods just presented. On occasion, problems are assigned that will extend or complete topics previously introduced. This book is intended primarily for science, engineering, and applied mathematics students.

About the author

Richard Bronson is a Professor of Mathematics and Computer Science at Fairleigh Dickinson University and is Senior Executive Assistant to the President. Ph.D., in Mathematics from Stevens Institute of Technology. He has written several books and numerous articles on Mathematics. He has served as Interim Provost of the Metropolitan Campus, and has been Acting Dean of the College of Science and Engineering at the university in New Jersey

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.